List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11055107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A multi-national, multi-disciplinary Delphi consensus study on using omega-3 polyunsaturated fatty acids (n-3 PUFAs) for the treatment of major depressive disorder. Journal of Affective Disorders, 2020, 265, 233-238.	4.1	12
2	International Society for Nutritional Psychiatry Research Practice Guidelines for Omega-3 Fatty Acids in the Treatment of Major Depressive Disorder. Psychotherapy and Psychosomatics, 2019, 88, 263-273.	8.8	114
3	Influence of birth cohort on age of onset cluster analysis in bipolar I disorder. European Psychiatry, 2015, 30, 99-105.	0.2	28
4	Molecular effects of lithium are partially mimicked by inositol-monophosphatase (IMPA)1 knockout mice in a brain region-dependent manner. European Neuropsychopharmacology, 2015, 25, 425-434.	0.7	23
5	Inositol-Deficient Food Augments a Behavioral Effect of Long-Term Lithium Treatment Mediated by Inositol Monophosphatase Inhibition. Journal of Clinical Psychopharmacology, 2015, 35, 175-177.	1.4	3
6	Lurasidone and Bipolar Disorder. American Journal of Psychiatry, 2014, 171, 131-133.	7.2	14
7	Inhibition of inositol monophosphatase (IMPase) at the calbindin-D28k binding site: Molecular and behavioral aspects. European Neuropsychopharmacology, 2013, 23, 1806-1815.	0.7	9
8	Behavioral addictions in euthymic patients with bipolar I disorder: a comparison to controls. International Journal of Bipolar Disorders, 2013, 1, 27.	2.2	5
9	The inositol monophosphatase inhibitor L-690,330 affects pilocarpine-behavior and the forced swim test. Psychopharmacology, 2013, 227, 503-508.	3.1	5
10	Acute Intracerebroventricular Inositol Does Not Reverse the Effect of Chronic Lithium Treatment in the Forced Swim Test. Neuropsychobiology, 2013, 68, 189-192.	1.9	8
11	Effects of lithium on lipopolysaccharide-induced inflammation in rat primary glia cells. Innate Immunity, 2012, 18, 447-458.	2.4	62
12	Individual differences and evidence-based psychopharmacology. BMC Medicine, 2012, 10, 110.	5.5	15
13	Gene-expression studies in understanding the mechanism of action of lithium. Expert Review of Neurotherapeutics, 2012, 12, 93-97.	2.8	14
14	Hyperhomocysteinemia does not affect global DNA methylation and nicotinamide N-methyltransferase expression in mice. Journal of Psychopharmacology, 2011, 25, 976-981.	4.0	9
15	Valnoctamide as a valproate substitute with low teratogenic potential in mania: a doubleâ€blind, controlled, addâ€on clinical trial. Bipolar Disorders, 2010, 12, 376-382.	1.9	43
16	The New Lithium Clinic. Neuropsychobiology, 2010, 62, 17-26.	1.9	16
17	No gross abnormality of plasma homocysteine after acute methionine loading in clinically stabilized patients with schizophrenia. Asian Journal of Psychiatry, 2010, 3, 64-66.	2.0	3
18	Identification of eukaryotic elongation factor-2 as a novel cellular target of lithium and glycogen synthase kinase-3. Molecular and Cellular Neurosciences, 2010, 45, 449-455.	2.2	18

#	Article	IF	CITATIONS
19	Subtyping Major Depressive Disorder. Psychotherapy and Psychosomatics, 2010, 79, 131-135.	8.8	103
20	Omega 3 Fatty Acid Treatment in Autism. Journal of Child and Adolescent Psychopharmacology, 2009, 19, 449-451.	1.3	58
21	Knockout mice in understanding the mechanism of action of lithium. Biochemical Society Transactions, 2009, 37, 1121-1125.	3.4	48
22	Neuropsychological correlates of homocysteine levels in euthymic bipolar patients. Journal of Affective Disorders, 2008, 105, 229-233.	4.1	27
23	No association between global leukocyte DNA methylation and homocysteine levels in schizophrenia patients. Schizophrenia Research, 2008, 101, 50-57.	2.0	55
24	Major Depressive Disorder. New England Journal of Medicine, 2008, 358, 55-68.	27.0	1,600
25	Antidepressive-like effects of rapamycin in animal models: Implications for mTOR inhibition as a new target for treatment of affective disorders. Brain Research Bulletin, 2008, 76, 469-473.	3.0	121
26	Glycogen synthase kinase-3β heterozygote knockout mice as a model of findings in postmortem schizophrenia brain or as a model of behaviors mimicking lithium action: negative results. Behavioural Pharmacology, 2008, 19, 217-224.	1.7	38
27	Treatment of Bipolar Depression. New England Journal of Medicine, 2007, 356, 1771-1773.	27.0	23
28	Lithium's effect in forced-swim test is blood level dependent but not dependent on weight loss. Behavioural Pharmacology, 2007, 18, 77-80.	1.7	52
29	Mitochondrial DNA HV lineage increases the susceptibility to schizophrenia among Israeli Arabs. Schizophrenia Research, 2007, 94, 354-358.	2.0	39
30	Lithium–pilocarpine seizures as a model for lithium action in mania. Neuroscience and Biobehavioral Reviews, 2007, 31, 843-849.	6.1	20
31	P.8.a.005 Familial heritability of increased homocysteine in schizophrenia. European Neuropsychopharmacology, 2006, 16, S537.	0.7	0
32	Homocysteine-Reducing Strategies Improve Symptoms in Chronic Schizophrenic Patients with Hyperhomocysteinemia. Biological Psychiatry, 2006, 60, 265-269.	1.3	117
33	SMIT1 haploinsufficiency causes brain inositol deficiency without affecting lithium-sensitive behavior. Molecular Genetics and Metabolism, 2006, 88, 384-388.	1.1	32
34	Transmission disequilibrium and haplotype analyses of the G72/G30 locus: Suggestive linkage to schizophrenia in Palestinian Arabs living in the North of Israel. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 91-95.	1.7	49
35	Omega-3 Treatment of Childhood Depression: A Controlled, Double-Blind Pilot Study. American Journal of Psychiatry, 2006, 163, 1098-1100.	7.2	303
36	Nutritional and life style determinants of plasma homocysteine in schizophrenia patients. European Neuropsychopharmacology, 2005, 15, 291-295.	0.7	23

#	Article	IF	CITATIONS
37	High homocysteine serum levels in young male schizophrenia and bipolar patients and in an animal model. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2005, 29, 1181-1191.	4.8	52
38	Epi-inositol is ineffective in Porsolt Forced Swim Test model of depression. Neuropsychiatric Disease and Treatment, 2005, 1, 189-190.	2.2	2
39	Homocysteine levels in newly admitted schizophrenic patients. Journal of Psychiatric Research, 2004, 38, 413-416.	3.1	98
40	Bipolar Disorder. New England Journal of Medicine, 2004, 351, 476-486.	27.0	468
41	Lithium inhibitable enzymes in postmortem brain of bipolar patients. Journal of Psychiatric Research, 2003, 37, 433-442.	3.1	14
42	Right prefrontal TMS versus sham treatment of mania: a controlled study. Bipolar Disorders, 2003, 5, 36-39.	1.9	80
43	The effect of lithium on expression of genes for inositol biosynthetic enzymes in mouse hippocampus; a comparison with the yeast model. Molecular Brain Research, 2003, 115, 104-110.	2.3	33
44	GSK-3 and the neurodevelopmental hypothesis of schizophrenia. European Neuropsychopharmacology, 2002, 12, 13-25.	0.7	122
45	Reduced inositol content in lymphocyteâ€derived cell lines from bipolar patients. Bipolar Disorders, 2002, 4, 67-69.	1.9	26
46	Low GSK-3 activity in frontal cortex of schizophrenic patients. Schizophrenia Research, 2001, 52, 101-105.	2.0	130
47	The antidepressant activity of inositol in the forced swim test involves 5-HT2 receptors. Behavioural Brain Research, 2001, 118, 77-83.	2.2	58
48	No evidence for linkage by transmission disequilibrium test analysis of microsatellite marker D22S278 and schizophrenia in a Palestinian Arab and in a German population. American Journal of Medical Genetics Part A, 2001, 105, 328-331.	2.4	3
49	The effects of inositol treatment in animal models of psychiatric disorders. Journal of Affective Disorders, 2001, 62, 113-121.	4.1	56
50	Nordidemnin potently inhibits inositol uptake in cultured astrocytes and dose-dependently augments lithium's proconvulsant effect in vivo. , 2000, 60, 116-121.		11
51	No association between the dopamine D3 receptorBal I polymorphism and schizophrenia in a family-based study of a Palestinian Arab population. American Journal of Medical Genetics Part A, 2000, 96, 778-780.	2.4	18
52	Epi-inositol: A potential antidepressant. Drug Development Research, 2000, 50, 309-315.	2.9	4
53	Rorschach markers in offspring of manic-depressive patients. Journal of Affective Disorders, 2000, 59, 231-236.	4.1	11
54	Chronic treatment of human astrocytoma cells with lithium, carbamazepine or valproic acid decreases inositol uptake at high inositol concentrations but increases it at low inositol concentrations. Brain Research, 2000, 855, 158-161.	2.2	40

RH BELMAKER

#	Article	IF	CITATIONS
55	Psychological responses in family members after the Hebron massacre. Depression and Anxiety, 1999, 9, 27-31.	4.1	29
56	Rat brain monoamines after acute and chronic myo-inositol treatment. European Neuropsychopharmacology, 1999, 10, 27-30.	0.7	7
57	Chronic treatment with lithium and pretreatment with excess inositol reduce inositol pool size in astrocytes by different mechanisms. Brain Research, 1998, 787, 34-40.	2.2	24
58	Transcranial Magnetic Stimulation in Mania: A Controlled Study. American Journal of Psychiatry, 1998, 155, 1608-1610.	7.2	185
59	S.07.05 The effects of transcranial magnetic stimulation on β-adrenergic receptors and brain monoamines. European Neuropsychopharmacology, 1997, 7, S93-S94.	0.7	0
60	The Effects of TMS on Animal Models of Depression, β-Adrenergic Receptors, and Brain Monoamines. CNS Spectrums, 1997, 2, 26-30.	1.2	24
61	Phorbol ester intracerebroventricularly induces a behavioral hypoactivity that is not affected by chronic or acute lithium. European Neuropsychopharmacology, 1996, 6, 39-41.	0.7	4
62	Differential uptake of myo-inositol in vivo into rat brain areas. European Neuropsychopharmacology, 1996, 6, 73-75.	0.7	38
63	Lack of effect of ECS on rat brain inositol monophosphatase activity and inositol levels and of i.c.v. inositol on ictal and post-ictal length. Journal of Psychiatric Research, 1996, 30, 39-43.	3.1	0
64	TPQ in euthymic manic-depressive patients. Journal of Psychiatric Research, 1996, 30, 353-357.	3.1	78
65	Lack of effect of 6 g inositol treatment on post-ECT cognitive function in humans. Journal of Psychiatric Research, 1995, 29, 487-489.	3.1	11
66	The effect of transcranial magnetic stimulation of rat brain on behavioral models of depression. Brain Research, 1995, 699, 130-132.	2.2	109
67	High-dose peripheral inositol raises brain inositol levels and reverses behavioral effects of inositol depletion by lithium. Pharmacology Biochemistry and Behavior, 1994, 49, 341-343.	2.9	32
68	Genetic markers, temperament, and psychopathology. Biological Psychiatry, 1994, 36, 71-72.	1.3	16
69	Transcranial magnetic stimulation in depression and schizophrenia. European Neuropsychopharmacology, 1994, 4, 287-288.	0.7	115
70	CSF inositol in schizophrenia and high-dose inositol treatment of schizophrenia. European Neuropsychopharmacology, 1994, 4, 487-490.	0.7	18
71	Behavioral evidence for the existence of two pools of cellular inositol. European Neuropsychopharmacology, 1994, 4, 463-467.	0.7	28
72	The 4-dedimethylamino derivative of tetracycline loses both ability to block cyclic AMP accumulation and ability to inhibit rat motor activity. European Neuropsychopharmacology, 1994, 4, 419-420.	0.7	3

RH BELMAKER

#	Article	IF	CITATIONS
73	The effect of inositol on cognitive processes and mood states in normal volunteers. European Neuropsychopharmacology, 1994, 4, 417.	0.7	6
74	Inositol. European Neuropsychopharmacology, 1994, 4, 165-166.	0.7	0
75	The effect of transcranial magnetic stimulation compared with electroconvulsive shock on rat apomorphine-induced stereotypy. European Neuropsychopharmacology, 1994, 4, 449.	0.7	28
76	Effects of inositol on lithium-induced EEG abnormalities. European Neuropsychopharmacology, 1994, 4, 419.	0.7	0
77	Species differences in susceptibility to Li-pilocarpine seizures. European Neuropsychopharmacology, 1994, 4, 428-429.	0.7	4
78	Mechanism of lithium lethality in rats. Journal of Psychiatric Research, 1993, 27, 415-422.	3.1	1
79	Inositol treatment raises CSF inositol levels. Brain Research, 1993, 627, 168-170.	2.2	68
80	Dose-response and time curve of inositol prevention of Li-pilocarpine seizures. European Neuropsychopharmacology, 1993, 3, 428-429.	0.7	12
81	Biochemical, behavioral, and clinical studies of the role of inositol in lithium treatment and depression. Biological Psychiatry, 1993, 34, 839-852.	1.3	105
82	Lack of effect of inositol treatment in chronic schizophrenia. Biological Psychiatry, 1993, 33, 673-675.	1.3	16
83	Linkage of a normal personality trait to the color-blindness gene: preliminary evidence. Biological Psychiatry, 1993, 34, 581-583.	1.3	9
84	Raised monophosphatase activity in schizophrenic patients. Clinica Chimica Acta, 1992, 209, 89-93.	1.1	20
85	FAILURE OF ADDITION OF LITHIUM TO IMIPRAMINE TO ENHANCE ACTIVITY IN RATS OR MOOD IN NORMAL VOLUNTEERS. Basic and Clinical Pharmacology and Toxicology, 1992, 71, 18-25.	0.0	0
86	Inhibition by antibiotic tetracyclines of rat cortical noradrenergic adenylate cyclase and amphetamine-induced hyperactivity. Pharmacology Biochemistry and Behavior, 1990, 37, 417-424.	2.9	22
87	Inositol-1-phosphatase in red blood cells of manic-depressive patients before and during treatment with lithium. Biological Psychiatry, 1990, 27, 552-555.	1.3	29
88	Lithium research: State of the art. Biological Psychiatry, 1990, 27, 1279-1281.	1.3	15
89	Intracerebroventricularmyo-inositol antagonizes lithium-induced suppression of rearing behaviour in rats. Brain Research, 1990, 534, 345-347.	2.2	38
90	Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature, 1988, 331, 440-442.	27.8	489

#	Article	IF	CITATIONS
91	Effects of lithium in vitro and ex vivo on components of the adenylate cyclase system in membranes from the cerebral cortex of the rat. Neuropharmacology, 1987, 26, 211-217.	4.1	142
92	Interstrain correlation between behavioural effects of lithium and effects on cortical cyclic AMP. Pharmacology Biochemistry and Behavior, 1986, 24, 9-13.	2.9	36
93	Effects of lithium in vitro on noradrenaline-induced cyclic AMP accumulation in rat cortical slices after reserpine-induced supersensitivity. Neuropharmacology, 1985, 24, 353-355.	4.1	6
94	Effect of Treatment and Withdrawal from Chronic Lithium in Rats on Stimulant-Induced Responses. Neuropsychobiology, 1984, 11, 28-32.	1.9	31
95	Rorschach Markers in Euthymic Manic-Depressive Illness. Neuropsychobiology, 1984, 12, 96-100.	1.9	12
96	The effects of chronic lithium and ECT on A1 and A2 adenosine receptor systems in rat brain. Brain Research, 1984, 291, 188-192.	2.2	46
97	Lack of Benefit from Magnesium in Lithium Toxicity. Neuropsychobiology, 1982, 8, 10-11.	1.9	5