
Peter M Hwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11050277/publications.pdf Version: 2024-02-01

DETED M HWANC

#	Article	IF	CITATIONS
1	RPIâ€194 is a Novel Troponin Activator that Increases the Calcium Sensitivity of Striated Muscle Contraction. FASEB Journal, 2022, 36, .	0.5	0
2	Proteolysis and multimerization regulate signaling along the two-component regulatory system AdeRS. IScience, 2021, 24, 102476.	4.1	6
3	Dilated Cardiomyopathy Mutations and Phosphorylation disrupt the Active Orientation of Cardiac Troponin C. Journal of Molecular Biology, 2021, 433, 167010.	4.2	7
4	Solution NMR spectroscopy of membrane proteins. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183356.	2.6	19
5	Deciphering the activation and recognition mechanisms of Staphylococcus aureus response regulator ArlR. Nucleic Acids Research, 2019, 47, 11418-11429.	14.5	15
6	Structure and proteolytic susceptibility of the inhibitory C-terminal tail of cardiac troponin I. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 661-671.	2.4	12
7	3-Chlorodiphenylamine activates cardiac troponin by a mechanism distinct from bepridil or TFP. Journal of General Physiology, 2019, 151, 9-17.	1.9	14
8	The calcium sensitizer drug MCI-154 binds the structural C-terminal domain of cardiac troponin C. Biochemistry and Biophysics Reports, 2018, 16, 145-151.	1.3	6
9	Proteolytic Digestion of Serum Cardiac Troponin I as Marker of Ischemic Severity. journal of applied laboratory medicine, The, 2018, 3, 450-455.	1.3	14
10	Structural Changes Induced by the Binding of the Calcium Desensitizer W7 to Cardiac Troponin. Biochemistry, 2018, 57, 6461-6469.	2.5	10
11	Cardiac Troponin Complex: Cardiac Troponin C (TNNC1), Cardiac Troponin I (TNNI3), and Cardiac Troponin T (TNNT2). , 2018, , 692-701.		0
12	Stereoselective Deuteration in Aspartate, Asparagine, Lysine, and Methionine Amino Acid Residues Using Fumarate as a Carbon Source for <i>Escherichia coli</i> in D ₂ O. Biochemistry, 2017, 56, 6015-6029.	2.5	4
13	Structures reveal details of small molecule binding to cardiac troponin. Journal of Molecular and Cellular Cardiology, 2016, 101, 134-144.	1.9	39
14	â€~(De-)sensitization' vs. â€~Uncoupling': what drives cardiomyopathies in the thin filament?. Cardiovascular Research, 2016, 109, 185-186.	3.8	2
15	Cardiac Troponin Complex: Cardiac Troponin C (TNNC1), Cardiac Troponin I (TNNI3), and Cardiac Troponin T (TNNT2). , 2016, , 1-10.		0
16	Structure and function of cardiac troponin C (TNNC1): Implications for heart failure, cardiomyopathies, and troponin modulating drugs. Gene, 2015, 571, 153-166.	2.2	94
17	Targeting the sarcomere to correct muscle function. Nature Reviews Drug Discovery, 2015, 14, 313-328.	46.4	105
18	Combining a PagP fusion protein system with nickel ion-catalyzed cleavage to produce intrinsically disordered proteins in E. coli. Protein Expression and Purification, 2015, 116, 133-138.	1.3	12

Peter M Hwang

#	Article	IF	CITATIONS
19	Targeted expression, purification, and cleavage of fusion proteins from inclusion bodies in <i>Escherichia coli</i> . FEBS Letters, 2014, 588, 247-252.	2.8	82
20	The cardiac-specific N-terminal region of troponin I positions the regulatory domain of troponin C. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14412-14417.	7.1	57
21	A PagP fusion protein system for the expression of intrinsically disordered proteins in Escherichia coli. Protein Expression and Purification, 2012, 85, 148-151.	1.3	29
22	Topology of an Outer-Membrane Enzyme:  Measuring Oxygen and Water Contacts in Solution NMR Studies of PagP. Journal of the American Chemical Society, 2006, 128, 8256-8264.	13.7	52
23	Quantitative NMR spectroscopy of supramolecular complexes: Dynamic side pores in ClpP are important for product release. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16678-16683.	7.1	195
24	Solution Structure and Dynamics of Integral Membrane Proteins by NMR: A Case Study Involving the Enzyme PagP. Methods in Enzymology, 2005, 394, 335-350.	1.0	32
25	From The Cover: The integral membrane enzyme PagP alternates between two dynamically distinct states. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9618-9623.	7.1	104
26	Nuclear Magnetic Resonance Spectroscopy of High-Molecular-Weight Proteins. Annual Review of Biochemistry, 2004, 73, 107-146.	11.1	247
27	A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin. EMBO Journal, 2004, 23, 2931-2941.	7.8	134
28	Cross-Correlated Relaxation Enhanced1Hâ^'13C NMR Spectroscopy of Methyl Groups in Very High Molecular Weight Proteins and Protein Complexes. Journal of the American Chemical Society, 2003, 125, 10420-10428.	13.7	550
29	Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13560-13565.	7.1	302
30	A â€~three-pronged' binding mechanism for the SAP/SH2D1A SH2 domain: structural basis and relevance to the XLP syndrome. EMBO Journal, 2002, 21, 314-323.	7.8	82
31	Domain orientation in beta-cyclodextrin-loaded maltose binding protein: diffusion anisotropy measurements confirm the results of a dipolar coupling study. Journal of Biomolecular NMR, 2001, 20, 83-88.	2.8	40
32	The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles. FEBS Letters, 1999, 446, 213-217.	2.8	104
33	Structure of the Antimicrobial Peptide Tritrpticin Bound to Micelles:  A Distinct Membrane-Bound Peptide Fold,. Biochemistry, 1999, 38, 16749-16755.	2.5	147
34	Structure-function relationships of antimicrobial peptides. Biochemistry and Cell Biology, 1998, 76, 235-246.	2.0	287
35	Three-Dimensional Solution Structure of Lactoferricin B, an Antimicrobial Peptide Derived from Bovine Lactoferrinâ€. Biochemistry, 1998, 37, 4288-4298.	2.5	233
36	Small Molecule RPI-194 Stabilizes Activated Troponin to Increase the Calcium Sensitivity of Striated Muscle Contraction. Frontiers in Physiology, 0, 13, .	2.8	4