
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1104945/publications.pdf Version: 2024-02-01



IÃ1/ PCEN A RICHT

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Effect of mixing and feed batch sequencing on the prevalence and distribution of African swine fever virus in swine feed. Transboundary and Emerging Diseases, 2022, 69, 115-120.              | 3.0  | 5         |
| 2  | Infection and transmission of ancestral SARS-CoV-2 and its alpha variant in pregnant white-tailed deer. Emerging Microbes and Infections, 2022, 11, 95-112.                                    | 6.5  | 77        |
| 3  | Emergence, Evolution, and Pathogenicity of Influenza A(H7N4) Virus in Shorebirds in China. Journal of<br>Virology, 2022, 96, JVI0171721.                                                       | 3.4  | 11        |
| 4  | Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission.<br>Cell Host and Microbe, 2022, 30, 373-387.e7.                                           | 11.0 | 138       |
| 5  | Advances and gaps in SARS-CoV-2 infection models. PLoS Pathogens, 2022, 18, e1010161.                                                                                                          | 4.7  | 61        |
| 6  | Rift Valley fever virus Gn V5-epitope tagged virus enables identification of UBR4 as a Gn interacting protein that facilitates Rift Valley fever virus production. Virology, 2022, 567, 65-76. | 2.4  | 3         |
| 7  | Susceptibility of sheep to experimental co-infection with the ancestral lineage of SARS-CoV-2 and its alpha variant. Emerging Microbes and Infections, 2022, 11, 662-675.                      | 6.5  | 21        |
| 8  | Three-Week Old Pigs Are Not Susceptible to Productive Infection with SARS-COV-2. Microorganisms, 2022, 10, 407.                                                                                | 3.6  | 2         |
| 9  | Effects of Spike Mutations in SARS-CoV-2 Variants of Concern on Human or Animal ACE2-Mediated Virus Entry and Neutralization. Microbiology Spectrum, 2022, 10, .                               | 3.0  | 24        |
| 10 | Development of a chromatographic lateral flow immunoassay for detection of African swine fever virus antigen in blood. Animal Diseases, 2022, 2, .                                             | 1.4  | 2         |
| 11 | Characterization of SARS-CoV-2 Spike mutations important for infection of mice and escape from human immune sera. Nature Communications, 2022, 13, .                                           | 12.8 | 19        |
| 12 | The future of biocontainment research at Kansas State University. American Journal of Veterinary<br>Research, 2022, 83, .                                                                      | 0.6  | 0         |
| 13 | Middle East Respiratory Syndrome-Coronavirus Seropositive Bactrian Camels, Mongolia. Vector-Borne and Zoonotic Diseases, 2021, 21, 128-131.                                                    | 1.5  | 8         |
| 14 | Unaltered influenza disease outcomes in swine prophylactically treated with α-galactosylceramide.<br>Developmental and Comparative Immunology, 2021, 114, 103843.                              | 2.3  | 3         |
| 15 | Experimental re-infected cats do not transmit SARS-CoV-2. Emerging Microbes and Infections, 2021, 10, 638-650.                                                                                 | 6.5  | 48        |
| 16 | Environmental Stability of SARS-CoV-2 on Different Types of Surfaces under Indoor and Seasonal<br>Climate Conditions. Pathogens, 2021, 10, 227.                                                | 2.8  | 56        |
| 17 | Myeloid-like Î <sup>3</sup> δT cell subset in the immune response to an experimental Rift Valley fever vaccine in sheep.<br>Veterinary Immunology and Immunopathology, 2021, 233, 110184.      | 1.2  | 3         |
| 18 | Susceptibility of Midge and Mosquito Vectors to SARS-CoV-2. Journal of Medical Entomology, 2021, 58, 1948-1951.                                                                                | 1.8  | 14        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Limited Genetic Diversity Detected in Middle East Respiratory Syndrome-Related Coronavirus Variants<br>Circulating in Dromedary Camels in Jordan. Viruses, 2021, 13, 592.                                                             | 3.3  | 5         |
| 20 | Seasonal Stability of SARS-CoV-2 in Biological Fluids. Pathogens, 2021, 10, 540.                                                                                                                                                      | 2.8  | 24        |
| 21 | Mechanical transmission of SARS-CoV-2 by house flies. Parasites and Vectors, 2021, 14, 214.                                                                                                                                           | 2.5  | 30        |
| 22 | Bat influenza vectored NS1-truncated live vaccine protects pigs against heterologous virus challenge.<br>Vaccine, 2021, 39, 1943-1950.                                                                                                | 3.8  | 7         |
| 23 | TOP1 inhibition therapy protects against SARS-CoV-2-induced lethal inflammation. Cell, 2021, 184, 2618-2632.e17.                                                                                                                      | 28.9 | 80        |
| 24 | Preliminary Evaluation of a Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine<br>Providing Full Protection against Heterologous Virulent Challenge in Cattle. Vaccines, 2021, 9, 748.                                  | 4.4  | 7         |
| 25 | Evaluating the distribution of African swine fever virus within a feed mill environment following manufacture of inoculated feed. PLoS ONE, 2021, 16, e0256138.                                                                       | 2.5  | 8         |
| 26 | Meat Exudate for Detection of African Swine Fever Virus Genomic Material and Anti-ASFV Antibodies.<br>Viruses, 2021, 13, 1744.                                                                                                        | 3.3  | 6         |
| 27 | High dose of vesicular stomatitis virus-vectored Ebola virus vaccine causes vesicular disease in swine without horizontal transmission. Emerging Microbes and Infections, 2021, 10, 651-663.                                          | 6.5  | 5         |
| 28 | Reston virus causes severe respiratory disease in young domestic pigs. Proceedings of the National<br>Academy of Sciences of the United States of America, 2021, 118, .                                                               | 7.1  | 16        |
| 29 | Presence of Antibodies to SARS-CoV-2 in Domestic Cats in Istanbul, Turkey, Before and After COVID-19<br>Pandemic. Frontiers in Veterinary Science, 2021, 8, 707368.                                                                   | 2.2  | 13        |
| 30 | Natural and Experimental SARS-CoV-2 Infection in Domestic and Wild Animals. Viruses, 2021, 13, 1993.                                                                                                                                  | 3.3  | 70        |
| 31 | Emergence of West Nile Virus Lineage-2 in Resident Corvids in Istanbul, Turkey. Vector-Borne and<br>Zoonotic Diseases, 2021, 21, 892-899.                                                                                             | 1.5  | 2         |
| 32 | Perspectives on the Changing Landscape of Epizootic Hemorrhagic Disease Virus Control. Viruses, 2021, 13, 2268.                                                                                                                       | 3.3  | 7         |
| 33 | Updated distribution and host records for the argasid tick Ornithodoros (Pavlovskyella) zumpti: A<br>potential vector of African swine fever virus in South Africa. Onderstepoort Journal of Veterinary<br>Research, 2021, 88, e1-e4. | 1.2  | 2         |
| 34 | A chimeric influenza hemagglutinin delivered by parainfluenza virus 5 vector induces broadly<br>protective immunity against genetically divergent influenza a H1 viruses in swine. Veterinary<br>Microbiology, 2020, 250, 108859.     | 1.9  | 4         |
| 35 | Modulation of Immune Responses to Influenza A Virus Vaccines by Natural Killer T Cells. Frontiers in<br>Immunology, 2020, 11, 2172.                                                                                                   | 4.8  | 13        |
| 36 | SARS-CoV-2 infection, disease and transmission in domestic cats. Emerging Microbes and Infections, 2020, 9, 2322-2332.                                                                                                                | 6.5  | 215       |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Animal models for COVID-19. Nature, 2020, 586, 509-515.                                                                                                                                                                     | 27.8 | 705       |
| 38 | Susceptibility of swine cells and domestic pigs to SARS-CoV-2. Emerging Microbes and Infections, 2020, 9, 2278-2288.                                                                                                        | 6.5  | 84        |
| 39 | Editorial: Emerging Arboviruses. Frontiers in Veterinary Science, 2020, 7, 593872.                                                                                                                                          | 2.2  | 2         |
| 40 | Detection of SARS-CoV-2 by RNAscope® in situ hybridization and immunohistochemistry techniques.<br>Archives of Virology, 2020, 165, 2373-2377.                                                                              | 2.1  | 33        |
| 41 | Long amplicon sequencing for improved genetic characterization of African swine fever virus.<br>Journal of Virological Methods, 2020, 285, 113946.                                                                          | 2.1  | 5         |
| 42 | Identification of Newcastle disease virus subgenotype VII.2 in wild birds in Turkey. BMC Veterinary Research, 2020, 16, 277.                                                                                                | 1.9  | 15        |
| 43 | A Critical Needs Assessment for Research in Companion Animals and Livestock Following the Pandemic of COVID-19 in Humans. Vector-Borne and Zoonotic Diseases, 2020, 20, 393-405.                                            | 1.5  | 70        |
| 44 | African Swine Fever Virus: An Emerging DNA Arbovirus. Frontiers in Veterinary Science, 2020, 7, 215.                                                                                                                        | 2.2  | 211       |
| 45 | Investigation of Vector-Borne Viruses in Ticks, Mosquitos, and Ruminants in the Thrace District of<br>Turkey. Vector-Borne and Zoonotic Diseases, 2020, 20, 670-679.                                                        | 1.5  | 1         |
| 46 | What We Need to Consider During and After the SARS-CoV-2 Pandemic. Vector-Borne and Zoonotic Diseases, 2020, 20, 477-483.                                                                                                   | 1.5  | 6         |
| 47 | Livestock Challenge Models of Rift Valley Fever for Agricultural Vaccine Testing. Frontiers in<br>Veterinary Science, 2020, 7, 238.                                                                                         | 2.2  | 7         |
| 48 | First report of influenza D virus infection in Turkish cattle with respiratory disease. Research in<br>Veterinary Science, 2020, 130, 98-102.                                                                               | 1.9  | 10        |
| 49 | Novel Reassortant Avian Influenza A(H9N2) Virus Isolate in Migratory Waterfowl in Hubei Province,<br>China. Frontiers in Microbiology, 2020, 11, 220.                                                                       | 3.5  | 16        |
| 50 | Evaluation of A Baculovirus-Expressed VP2 Subunit Vaccine for the Protection of White-Tailed Deer<br>(Odocoileus virginianus) from Epizootic Hemorrhagic Disease. Vaccines, 2020, 8, 59.                                    | 4.4  | 7         |
| 51 | Production of Recombinant N Protein of Infectious Bronchitis Virus Using the Baculovirus<br>Expression System and Its Assessment as a Diagnostic Antigen. Applied Biochemistry and<br>Biotechnology, 2019, 187, 506-517.    | 2.9  | 5         |
| 52 | Evaluation of an Indirect Enzyme-Linked Immunosorbent Assay Based on Recombinant<br>Baculovirus-Expressed Rift Valley Fever Virus Nucleoprotein as the Diagnostic Antigen. Journal of<br>Clinical Microbiology, 2019, 57, . | 3.9  | 8         |
| 53 | Subunit Vaccine Approaches for African Swine Fever Virus. Vaccines, 2019, 7, 56.                                                                                                                                            | 4.4  | 85        |
| 54 | Comparison of Pathogenicity and Transmissibility of Influenza B and D Viruses in Pigs. Viruses, 2019, 11, 905.                                                                                                              | 3.3  | 16        |

| #  | Article                                                                                                                                                                                                                  | IF        | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| 55 | Evaluation of a viral DNA-protein immunization strategy against African swine fever in domestic pigs.<br>Veterinary Immunology and Immunopathology, 2019, 208, 34-43.                                                    | 1.2       | 29            |
| 56 | Serological Evidence of Tick-Borne Encephalitis and West Nile Virus Infections Among Children with<br>Arthritis in Turkey. Vector-Borne and Zoonotic Diseases, 2019, 19, 446-449.                                        | 1.5       | 10            |
| 57 | DNA-Protein Vaccination Strategy Does Not Protect from Challenge with African Swine Fever Virus<br>Armenia 2007 Strain. Vaccines, 2019, 7, 12.                                                                           | 4.4       | 78            |
| 58 | Identification and evaluation of antivirals for Rift Valley fever virus. Veterinary Microbiology, 2019, 230, 110-116.                                                                                                    | 1.9       | 10            |
| 59 | Editorial overview: Emerging viruses: interspecies transmission. Current Opinion in Virology, 2019, 34,<br>iii-vi.                                                                                                       | 5.4       | 1             |
| 60 | African Swine Fever Virus Armenia/07 Virulent Strain Controls Interferon Beta Production through the cGAS-STING Pathway. Journal of Virology, 2019, 93, .                                                                | 3.4       | 116           |
| 61 | Individual-based network model for Rift Valley fever in Kabale District, Uganda. PLoS ONE, 2019, 14, e0202721.                                                                                                           | 2.5       | 10            |
| 62 | Virus survival and fitness when multiple genotypes and subtypes of influenza A viruses exist and circulate in swine. Virology, 2019, 532, 30-38.                                                                         | 2.4       | 8             |
| 63 | Rift Valley Fever Viral RNA Detection by <i>In Situ</i> Hybridization in Formalin-Fixed,<br>Paraffin-Embedded Tissues. Vector-Borne and Zoonotic Diseases, 2019, 19, 553-556.                                            | 1.5       | 10            |
| 64 | Schmallenberg Disease—A Newly Emerged Culicoides-Borne Viral Disease of Ruminants. Viruses, 2019,<br>11, 1065.                                                                                                           | 3.3       | 28            |
| 65 | Evaluation of a Field-Deployable Insulated Isothermal Polymerase Chain Reaction Nucleic Acid<br>Analyzer for Influenza A Virus Detection at Swine Exhibitions. Vector-Borne and Zoonotic Diseases,<br>2019, 19, 212-216. | 1.5       | 5             |
| 66 | Molecular aspects of Rift Valley fever virus and the emergence of reassortants. Virus Genes, 2019, 55, 1-11.                                                                                                             | 1.6       | 40            |
| 67 | Bluetongue and epizootic hemorrhagic disease viruses: recent developments with these globally re-emerging arboviral infections of ruminants. Current Opinion in Virology, 2019, 34, 56-62.                               | 5.4       | 52            |
| 68 | Comparative evaluation of pathogenicity of three isolates of vesicular stomatitis virus (Indiana) Tj ETQq0 0 0 rgBT                                                                                                      | /Qyerlock | 2 10 Tf 50 22 |
| 69 | Immunogenicity and efficacy of Schmallenberg virus envelope glycoprotein subunit vaccines. Journal of Veterinary Science, 2019, 20, e58.                                                                                 | 1.3       | 5             |
| 70 | Design, implementation, and interpretation of amplification studies for prion detection. Prion, 2018, 12, 73-82.                                                                                                         | 1.8       | 10            |
| 71 | Immunomodulatory effects of <i>Echinacea</i> and <i>Pelargonium</i> on the innate and adoptive immunity in calves. Food and Agricultural Immunology, 2018, 29, 744-761.                                                  | 1.4       | 16            |
|    |                                                                                                                                                                                                                          |           |               |

72The L83L ORF of African swine fever virus strain Georgia encodes for a non-essential gene that<br/>interacts with the host protein IL-1Î2. Virus Research, 2018, 249, 116-123.2.248

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | African Swine Fever Virus Biology and Vaccine Approaches. Advances in Virus Research, 2018, 100, 41-74.                                                                                                              | 2.1  | 147       |
| 74 | A Universal Influenza Virus Vaccine Candidate Tested in a Pig Vaccination-Infection Model in the<br>Presence of Maternal Antibodies. Vaccines, 2018, 6, 64.                                                          | 4.4  | 11        |
| 75 | Virological and Serological Responses of Sheep and Cattle to Experimental Schmallenberg Virus<br>Infection. Vector-Borne and Zoonotic Diseases, 2018, 18, 697-703.                                                   | 1.5  | 4         |
| 76 | Preliminary evaluation of diagnostic accuracy and precision of a competitive ELISA for detection of antibodies to Rift Valley fever virus in cattle and sheep sera. Journal of Virological Methods, 2018, 262, 6-11. | 2.1  | 5         |
| 77 | Susceptibility of White-Tailed Deer to Rift Valley Fever Virus. Emerging Infectious Diseases, 2018, 24, 1717-1719.                                                                                                   | 4.3  | 31        |
| 78 | Harnessing Invariant NKT Cells to Improve Influenza Vaccines: A Pig Perspective. International Journal of Molecular Sciences, 2018, 19, 68.                                                                          | 4.1  | 13        |
| 79 | A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope<br>on influenza HA. Nature Communications, 2018, 9, 2669.                                                           | 12.8 | 67        |
| 80 | Prion replication without host adaptation during interspecies transmissions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1141-1146.                                  | 7.1  | 45        |
| 81 | Impacts of different expressions of PA-X protein on 2009 pandemic H1N1 virus replication, pathogenicity and host immune responses. Virology, 2017, 504, 25-35.                                                       | 2.4  | 36        |
| 82 | Frequency, clinicopathological features and phylogenetic analysis of feline morbillivirus in cats in<br>Istanbul, Turkey. Journal of Feline Medicine and Surgery, 2017, 19, 1206-1214.                               | 1.6  | 34        |
| 83 | A reassortant H9N2 influenza virus containing 2009 pandemic H1N1 internal-protein genes acquired enhanced pig-to-pig transmission after serial passages in swine. Scientific Reports, 2017, 7, 1323.                 | 3.3  | 13        |
| 84 | High Prevalence of Middle East Respiratory Coronavirus in Young Dromedary Camels in Jordan.<br>Vector-Borne and Zoonotic Diseases, 2017, 17, 155-159.                                                                | 1.5  | 38        |
| 85 | Phenotyping and susceptibility of established porcine cells lines to African Swine Fever Virus infection and viral production. Scientific Reports, 2017, 7, 10369.                                                   | 3.3  | 36        |
| 86 | Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a<br>highly pathogenic H5N2 avian influenza virus. Npj Vaccines, 2017, 2, 33.                                        | 6.0  | 23        |
| 87 | H7N9 avian influenza A virus in China: a short report on its circulation, drug resistant mutants and novel antiviral drugs. Expert Review of Anti-Infective Therapy, 2017, 15, 723-727.                              | 4.4  | 13        |
| 88 | Zygote injection of CRISPR/Cas9 RNA successfully modifies the target gene without delaying blastocyst development or altering the sex ratio in pigs. Transgenic Research, 2017, 26, 97-107.                          | 2.4  | 42        |
| 89 | Evolution of Diagnostic Tests for Chronic Wasting Disease, a Naturally Occurring Prion Disease of<br>Cervids. Pathogens, 2017, 6, 35.                                                                                | 2.8  | 41        |
| 90 | Current Status of Rift Valley Fever Vaccine Development. Vaccines, 2017, 5, 29.                                                                                                                                      | 4.4  | 102       |

| #   | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Distinct virulence of Rift Valley fever phlebovirus strains from different genetic lineages in a mouse model. PLoS ONE, 2017, 12, e0189250.                                                                                                | 2.5 | 23        |
| 92  | Genotypes of hepatitis a virus in Turkey: first report and clinical profile of children infected with sub-genotypes IA and IIIA. BMC Infectious Diseases, 2017, 17, 561.                                                                   | 2.9 | 7         |
| 93  | Effects of PB1-F2 on the pathogenicity of H1N1 swine influenza virus in mice and pigs. Journal of<br>General Virology, 2017, 98, 31-42.                                                                                                    | 2.9 | 9         |
| 94  | Pathogenicity of modified bat influenza virus with different M genes and its reassortment potential with swine influenza A virus. Journal of General Virology, 2017, 98, 577-584.                                                          | 2.9 | 15        |
| 95  | Estimating chronic wasting disease susceptibility in cervids using real-time quaking-induced conversion. Journal of General Virology, 2017, 98, 2882-2892.                                                                                 | 2.9 | 20        |
| 96  | Reverse Transcriptase Real Time PCR Detection of Rift Valley Fever Virus RNA in Formalinâ€Fixed,<br>Paraffinâ€Embedded Tissues. FASEB Journal, 2017, 31, .                                                                                 | 0.5 | 0         |
| 97  | Experimental Infection of Calves by Two Genetically-Distinct Strains of Rift Valley Fever Virus.<br>Viruses, 2016, 8, 145.                                                                                                                 | 3.3 | 33        |
| 98  | Short Interfering RNA Inhibits Rift Valley Fever Virus Replication and Degradation of Protein Kinase R<br>in Human Cells. Frontiers in Microbiology, 2016, 7, 1889.                                                                        | 3.5 | 7         |
| 99  | Rapid control of pandemic H1N1 influenza by targeting NKT-cells. Scientific Reports, 2016, 6, 37999.                                                                                                                                       | 3.3 | 23        |
| 100 | A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against<br>Rift Valley Fever Challenge in Sheep. Scientific Reports, 2016, 6, 27719.                                                            | 3.3 | 50        |
| 101 | Seeded Amplification of Chronic Wasting Disease Prions in Nasal Brushings and Recto-anal<br>Mucosa-Associated Lymphoid Tissues from Elk by Real-Time Quaking-Induced Conversion. Journal of<br>Clinical Microbiology, 2016, 54, 1117-1126. | 3.9 | 44        |
| 102 | Recombinant Newcastle disease virus expressing H9 HA protects chickens against heterologous avian<br>influenza H9N2 virus challenge. Vaccine, 2016, 34, 2537-2545.                                                                         | 3.8 | 28        |
| 103 | Development of a sheep challenge model for Rift Valley fever. Virology, 2016, 489, 128-140.                                                                                                                                                | 2.4 | 38        |
| 104 | Immunoassay for the Detection of Animal Central Nervous Tissue in Processed Meat and Feed<br>Products. Journal of Agricultural and Food Chemistry, 2016, 64, 3661-3668.                                                                    | 5.2 | 4         |
| 105 | Phylogeny and S1 Gene Variation of Infectious Bronchitis Virus Detected in Broilers and Layers in<br>Turkey. Avian Diseases, 2016, 60, 596-602.                                                                                            | 1.0 | 19        |
| 106 | Mouse model for the Rift Valley fever virus MP12 strain infection. Veterinary Microbiology, 2016, 195, 70-77.                                                                                                                              | 1.9 | 14        |
| 107 | Complete Genome Sequence of Two Rift Valley Fever Virus Strains Isolated from Outbreaks in Saudi<br>Arabia (2000) and Kenya (2006 to 2007). Genome Announcements, 2016, 4, .                                                               | 0.8 | 7         |
| 108 | α-Galactosylceramide protects swine against influenza infection when administered as a vaccine adjuvant. Scientific Reports, 2016, 6, 23593.                                                                                               | 3.3 | 39        |

| #   | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Antemortem Detection of Chronic Wasting Disease Prions in Nasal Brush Collections and Rectal<br>Biopsy Specimens from White-Tailed Deer by Real-Time Quaking-Induced Conversion. Journal of Clinical<br>Microbiology, 2016, 54, 1108-1116. | 3.9 | 56        |
| 110 | Recognition of influenza H3N2 variant virus by human neutralizing antibodies. JCI Insight, 2016, 1, .                                                                                                                                      | 5.0 | 20        |
| 111 | Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle. Journal of General Virology, 2016, 97, 1720-1724.                                                                  | 2.9 | 4         |
| 112 | Comparison of Rift Valley fever virus replication in North American livestock and wildlife cell lines.<br>Frontiers in Microbiology, 2015, 6, 664.                                                                                         | 3.5 | 30        |
| 113 | The role of adenovirus 36 as a risk factor in obesity: The first clinical study made in the fatty tissues of adults in Turkey. Microbial Pathogenesis, 2015, 80, 57-62.                                                                    | 2.9 | 17        |
| 114 | Pathogenicity and Transmissibility of Novel Reassortant H3N2 Influenza Viruses with 2009 Pandemic<br>H1N1 Genes in Pigs. Journal of Virology, 2015, 89, 2831-2841.                                                                         | 3.4 | 36        |
| 115 | Newcastle Disease Virus-Vectored H7 and H5 Live Vaccines Protect Chickens from Challenge with H7N9 or H5N1 Avian Influenza Viruses. Journal of Virology, 2015, 89, 7401-7408.                                                              | 3.4 | 49        |
| 116 | Domestic Pigs Are Susceptible to Infection with Influenza B Viruses. Journal of Virology, 2015, 89, 4818-4826.                                                                                                                             | 3.4 | 73        |
| 117 | Safety of Recombinant VSV–Ebola Virus Vaccine Vector in Pigs. Emerging Infectious Diseases, 2015, 21,<br>702-704.                                                                                                                          | 4.3 | 27        |
| 118 | Characterization of Uncultivable Bat Influenza Virus Using a Replicative Synthetic Virus. PLoS<br>Pathogens, 2014, 10, e1004420.                                                                                                           | 4.7 | 58        |
| 119 | Emergence of a novel drug resistant H7N9 influenza virus: evidence based clinical potential of a<br>natural IFN-α for infection control and treatment. Expert Review of Anti-Infective Therapy, 2014, 12,<br>165-169.                      | 4.4 | 17        |
| 120 | A Glycoprotein Subunit Vaccine Elicits a Strong Rift Valley Fever Virus Neutralizing Antibody Response<br>in Sheep. Vector-Borne and Zoonotic Diseases, 2014, 14, 746-756.                                                                 | 1.5 | 47        |
| 121 | Detection and Partial Sequencing of Schmallenberg Virus in Cattle and Sheep in Turkey. Vector-Borne and Zoonotic Diseases, 2014, 14, 223-225.                                                                                              | 1.5 | 34        |
| 122 | Evaluation of lamb and calf responses to Rift Valley fever MP-12 vaccination. Veterinary Microbiology, 2014, 172, 44-50.                                                                                                                   | 1.9 | 28        |
| 123 | Swine and Influenza: A Challenge to One Health Research. Current Topics in Microbiology and Immunology, 2014, 385, 205-218.                                                                                                                | 1.1 | 21        |
| 124 | Analysis of Recombinant H7N9 Wild-Type and Mutant Viruses in Pigs Shows that the Q226L Mutation in<br>HA Is Important for Transmission. Journal of Virology, 2014, 88, 8153-8165.                                                          | 3.4 | 52        |
| 125 | The Pandemic H1N1 Influenza Experience. Current Topics in Microbiology and Immunology, 2013, 365, 269-279.                                                                                                                                 | 1.1 | 4         |
| 126 | Rift Valley Fever Virus Structural and Nonstructural Proteins: Recombinant Protein Expression and<br>Immunoreactivity Against Antisera from Sheep. Vector-Borne and Zoonotic Diseases, 2013, 13, 619-629.                                  | 1.5 | 33        |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | In vitro and in vivo replication of influenza A H1N1 WSN33 viruses with different M1 proteins. Journal of General Virology, 2013, 94, 884-895.                                                                             | 2.9 | 3         |
| 128 | Evaluation of the Zoonotic Potential of Transmissible Mink Encephalopathy. Pathogens, 2013, 2, 520-532.                                                                                                                    | 2.8 | 11        |
| 129 | Combination of PB2 271A and SR Polymorphism at Positions 590/591 Is Critical for Viral Replication and Virulence of Swine Influenza Virus in Cultured Cells and <i>In Vivo</i> . Journal of Virology, 2012, 86, 1233-1237. | 3.4 | 69        |
| 130 | Pathogenicity and transmissibility of reassortant H9 influenza viruses with genes from pandemic H1N1 virus. Journal of General Virology, 2012, 93, 2337-2345.                                                              | 2.9 | 36        |
| 131 | The neuraminidase and matrix genes of the 2009 pandemic influenza H1N1 virus cooperate functionally to facilitate efficient replication and transmissibility in pigs. Journal of General Virology, 2012, 93, 1261-1268.    | 2.9 | 36        |
| 132 | Recently Emerged Swine Influenza A Virus (H2N3) Causes Severe Pneumonia in Cynomolgus Macaques.<br>PLoS ONE, 2012, 7, e39990.                                                                                              | 2.5 | 15        |
| 133 | Rapid detection of the pandemic 2009 H1N1 virus M gene by realâ€time and gelâ€based RTâ€PCR assays.<br>Influenza and Other Respiratory Viruses, 2010, 4, 397-403.                                                          | 3.4 | 8         |
| 134 | Viral reassortment and transmission after co-infection of pigs with classical H1N1 and triple-reassortant H3N2 swine influenza viruses. Journal of General Virology, 2010, 91, 2314-2321.                                  | 2.9 | 51        |
| 135 | Attenuated Influenza Virus Vaccines with Modified NS1 Proteins. Current Topics in Microbiology and<br>Immunology, 2009, 333, 177-195.                                                                                      | 1.1 | 80        |
| 136 | The pig as a mixing vessel for influenza viruses: Human and veterinary implications. Journal of<br>Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2008, 3, 158-66.                       | 0.1 | 157       |
| 137 | Real–Time Reverse Transcription–Polymerase Chain Reaction Assays for the Detection and<br>Differentiation of North American Swine Influenza Viruses. Journal of Veterinary Diagnostic<br>Investigation, 2004, 16, 367-373. | 1.1 | 56        |
| 138 | Pathogenic and Antigenic Properties of Phylogenetically Distinct Reassortant H3N2 Swine Influenza<br>Viruses Cocirculating in the United States. Journal of Clinical Microbiology, 2003, 41, 3198-3205.                    | 3.9 | 150       |
| 139 | Prionoses and the Immune System. , 0, , 173-181.                                                                                                                                                                           |     | 0         |
| 140 | Clinical, virological, imaging and pathological findings in a SARS CoV-2 antibody positive cat. Journal of Veterinary Science, 0, 23, .                                                                                    | 1.3 | 1         |
| 141 | Development of an Indirect ELISA for the Detection of SARS-CoV-2 Antibodies in Cats. Frontiers in Veterinary Science, 0, 9, .                                                                                              | 2.2 | 3         |