Shigeyoshi Sakaki Or S Sakaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11048966/publications.pdf Version: 2024-02-01

		31976	49909
226	10,324	53	87
papers	citations	h-index	g-index
231	231	231	8380
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rh Complex with Unique Rh–Al Direct Bond: Theoretical Insight into its Characteristic Features and Application to Catalytic Reaction via I_f -Bond Activation. Topics in Catalysis, 2022, 65, 392-417.	2.8	7
2	Molecule in soft-crystal at ground and excited states: Theoretical approach. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100482.	11.6	5
3	Theoretical Study on Siâ^'Cl Bond Activation in Pd atalyzed Crossâ€Coupling of Chlorosilanes with Organoaluminum. European Journal of Organic Chemistry, 2022, 2022, .	2.4	7
4	Single atom alloys <i>vs.</i> phase separated alloys in Cu, Ag, and Au atoms with Ni(111) and Ni, Pd, and Pt atoms with Cu(111): a theoretical exploration. Physical Chemistry Chemical Physics, 2022, 24, 10420-10438.	2.8	4
5	Theoretical Insight into Catalysis of the Aluminabenzene–Iridium Complex for C(sp ³)–H Borylation of NEt ₃ : How to Control α- and β-Regioselectivities?. ACS Catalysis, 2022, 12, 4880-4897.	11.2	5
6	Theoretical Study of N–H σ-Bond Activation by Nickel(0) Complex: Reaction Mechanism, Electronic Processes, and Prediction of Better Ligand. Inorganic Chemistry, 2022, 61, 8715-8728.	4.0	2
7	Theoretical Study of NO Dissociative Adsorption onto 3d Metal Particles M ₅₅ (M = Fe, Co,) Tj ETQq1 ACS Omega, 2021, 6, 4888-4898.	1 0.7843 3.5	14 rgBT /Ov 5
8	Catalysis of core-shell nanoparticle M@Pt (M Co and Ni) for oxygen reduction reaction and its electronic structure in comparison to Pt nanoparticle. Journal of Catalysis, 2021, 397, 13-26.	6.2	13
9	Heterometallic d ⁸ –d ¹⁰ Coupling of Rh(I) and M(0) (M=Pd, Pt) in a Sandwich Framework of π onjugated Ligands. Chemistry - A European Journal, 2021, 27, 10558-10562.	3.3	0
10	Pincerâ€īype Phosphorus Compounds With Borylâ€Pendant And Application In Catalytic H 2 Generation From Ammoniaâ€Borane: A Theoretical Study. ChemCatChem, 2021, 13, 3925-3929.	3.7	3
11	Synthesis, Electronic Properties, and Lewis Acidity of Rhodium Complexes Bearing X-Type PBP, PAIP, and PGaP Pincer Ligands. Bulletin of the Chemical Society of Japan, 2021, 94, 1859-1868.	3.2	10
12	C2-selective alkylation of pyridines by rhodium–aluminum complexes. Tetrahedron, 2021, 95, 132339.	1.9	19
13	A Dualâ€Ligand Porous Coordination Polymer Chemiresistor with Modulated Conductivity and Porosity. Angewandte Chemie - International Edition, 2020, 59, 172-176.	13.8	124
14	A Dualâ€Ligand Porous Coordination Polymer Chemiresistor with Modulated Conductivity and Porosity. Angewandte Chemie, 2020, 132, 178-182.	2.0	8
15	Coordination Flexibility of the Rh(PXP) Complex to NH ₃ , CO, and C ₂ H ₄ (PXP = Diphosphine-Based Pincer Ligand; X = B, Al, and Ga): Theoretical Insight. Inorganic Chemistry, 2020, 59, 15862-15876.	4.0	9
16	O ₂ activation by core–shell Ru ₁₃ @Pt ₄₂ particles in comparison with Pt ₅₅ particles: a DFT study. RSC Advances, 2020, 10, 36090-36100.	3.6	3
17	Control of local flexibility towards <i>p</i> -xylene sieving in Hofmann-type porous coordination polymers. Chemical Communications, 2020, 56, 9632-9635.	4.1	14
18	Methane Borylation Catalyzed by Ru, Rh, and Ir Complexes in Comparison with Cyclohexane Borylation: Theoretical Understanding and Prediction. Journal of the American Chemical Society, 2020, 142, 16732-16747.	13.7	21

#	Article	IF	CITATIONS
19	Magnesiation of Aryl Fluorides Catalyzed by a Rhodium–Aluminum Complex. Journal of the American Chemical Society, 2020, 142, 11647-11652.	13.7	59
20	Structuralâ€Deformationâ€Energyâ€Modulation Strategy in a Soft Porous Coordination Polymer with an Interpenetrated Framework. Angewandte Chemie, 2020, 132, 15647-15651.	2.0	4
21	Structuralâ€Deformationâ€Energyâ€Modulation Strategy in a Soft Porous Coordination Polymer with an Interpenetrated Framework. Angewandte Chemie - International Edition, 2020, 59, 15517-15521.	13.8	38
22	Propene oxidation catalysis and electronic structure of M ₅₅ particles (M = Pd or Rh): differences and similarities between Pd ₅₅ and Rh ₅₅ . Physical Chemistry Chemical Physics, 2020, 22, 11783-11796.	2.8	5
23	Experimental and Theoretical Investigation of an S _N 2-type Pathway for Borate–Fluorine Bond Cleavage by Electron-Rich Late-Transition Metal Complexes. Inorganic Chemistry, 2020, 59, 4282-4291.	4.0	6
24	Delocalization of the Excited State and Emission Spectrum of the Platinum(II) Bipyridine Complex in Crystal: Periodic QM/MM Study. Journal of Physical Chemistry C, 2020, 124, 10453-10461.	3.1	16
25	Pd/NHC-catalyzed cross-coupling reactions of nitroarenes. Chemical Communications, 2019, 55, 9291-9294.	4.1	41
26	Reaction Behavior of the NO Molecule on the Surface of an M _{<i>n</i>} Particle (M = Ru,) Tj ETQqO (Journal of Physical Chemistry A, 2019, 123, 7021-7033.	0 0 rgBT /0 2.5	Overlock 10 T 24
27	Carbon dioxide capture and efficient fixation in a dynamic porous coordination polymer. Nature Communications, 2019, 10, 4362.	12.8	91
28	Design and control of gas diffusion process in a nanoporous soft crystal. Science, 2019, 363, 387-391.	12.6	332
29	Dependence of Absorption and Emission Spectra on Polymorphs of Gold(I) Isocyanide Complexes: Theoretical Study with QM/MM Approach. Journal of Physical Chemistry C, 2019, 123, 4773-4794.	3.1	12
30	sp ³ C–H Borylation Catalyzed by Iridium(III) Triboryl Complex: Comprehensive Theoretical Study of Reactivity, Regioselectivity, and Prediction of Excellent Ligand. Journal of the American Chemical Society, 2019, 141, 9854-9866.	13.7	44
31	Heptacoordinate Structures of Organotin Halides with Three Phosphine Donors: Halogenâ€Substituent Effect on Geometry. European Journal of Inorganic Chemistry, 2019, 2019, 3045-3052.	2.0	2
32	Theoretical prediction of Ni(I)â€catalyst for hydrosilylation of pyridine and quinoline. Journal of Computational Chemistry, 2019, 40, 2119-2130.	3.3	12
33	Characterization of Rh–Al Bond in Rh(PAIP) (PAIP = Pincer-type Diphosphino-Aluminyl Ligand) in Comparison with Rh(L)(PMe ₃) ₂ (L = AlMe ₂ ,) Tj ETQq1 1 0.784314 rgBT	/Overlock 4.0	10 Jf 50 182
34	How to understand very weak Cr–Cr double bonds and negative spin populations in trinuclear Cr complexes: theoretical insight. Physical Chemistry Chemical Physics, 2019, 21, 22976-22989.	2.8	3
35	Ni(I)-Hydride Catalyst for Hydrosilylation of Carbon Dioxide and Dihydrogen Generation: Theoretical Prediction and Exploration of Full Catalytic Cycle. Organometallics, 2018, 37, 1258-1270.	2.3	21
36	Theoretical Insight into Gate-Opening Adsorption Mechanism and Sigmoidal Adsorption Isotherm into Porous Coordination Polymer. Journal of the American Chemical Society, 2018, 140, 13958-13969.	13.7	48

#	Article	IF	CITATIONS
37	Reversible Oxidative Addition/Reductive Elimination of a Siâ^'H Bond with Baseâ€Stabilized Silylenes: A Theoretical Insight. Chemistry - A European Journal, 2018, 24, 11377-11385.	3.3	7
38	Rhodium Complexes Bearing PAIP Pincer Ligands. Journal of the American Chemical Society, 2018, 140, 7070-7073.	13.7	96
39	How To Perform Suzuki–Miyaura Reactions of Nitroarene or Nitrations of Bromoarene Using a Pd ⁰ Phosphine Complex: Theoretical Insight and Prediction. Organometallics, 2018, 37, 3480-3487.	2.3	24
40	A Theoretical Investigation on CO Oxidation by Singleâ€Atom Catalysts M ₁ /l͡³â€Al ₂ O ₃ (M=Pd, Fe, Co, and Ni). ChemCatChem, 2017, 9, 1222-122	9. ^{3.7}	76
41	Reactions of Silanone(silyl)tungsten and -molybdenum Complexes with MesCNO, (Me ₂ SiO) ₃ , MeOH, and H ₂ O: Experimental and Theoretical Studies. Organometallics, 2017, 36, 1009-1018.	2.3	7
42	[2 + 2]-type Reaction of Metal–Metal σ-Bond with Fullerene Forming an η1-C60 Metal Complex: Mechanistic Details of Formation Reaction and Prediction of a New η1-C60 Metal Complex. Inorganic Chemistry, 2017, 56, 6746-6754.	4.0	14
43	A coordination strategy to realize a sextuply-bonded complex. Physical Chemistry Chemical Physics, 2017, 19, 14947-14954.	2.8	8
44	Iridium Hydride Mediated Stannane–Fluorine and â^'Chlorine σ-Bond Activation: Reversible Switching between X-Type Stannyl and Z-Type Stannane Ligands. Organometallics, 2017, 36, 2096-2106.	2.3	14
45	Photo absorption of â€coumaric acid in aqueous solution: RISMâ€SCFâ€SEDD theory approach. Journal of Computational Chemistry, 2017, 38, 1567-1573.	3.3	6
46	Mo–Mo Quintuple Bond is Highly Reactive in H–H, C–H, and O–H σ-Bond Cleavages Because of the Polarized Electronic Structure in Transition State. Inorganic Chemistry, 2017, 56, 4011-4020.	4.0	20
47	Theoretical Study of Nickel-Catalyzed Selective Alkenylation of Pyridine: Reaction Mechanism and Crucial Roles of Lewis Acid and Ligands in Determining the Selectivity. Journal of Organic Chemistry, 2017, 82, 289-301.	3.2	34
48	How to Control Inversion vs Retention Transmetalation between Pd ^{II} –Phenyl and Cu ^I –Alkyl Complexes: Theoretical Insight. Journal of the American Chemical Society, 2017, 139, 14065-14076.	13.7	13
49	DFT Mechanistic Study on Alkene Hydrogenation Catalysis of Iron Metallaboratrane: Characteristic Features of Iron Species. Organometallics, 2017, 36, 3530-3538.	2.3	18
50	Aromatic C–H σ-Bond Activation by Ni ⁰ , Pd ⁰ , and Pt ⁰ Alkene Complexes: Concerted Oxidative Addition to Metal vs Ligand-to-Ligand H Transfer Mechanism. Organometallics, 2017, 36, 2761-2771.	2.3	84
51	Density Gradation of Open Metal Sites in the Mesospace of Porous Coordination Polymers. Journal of the American Chemical Society, 2017, 139, 11576-11583.	13.7	118
52	Characteristic Features of CO ₂ and CO Adsorptions to Paddle-Wheel-type Porous Coordination Polymer. Journal of Physical Chemistry C, 2017, 121, 19129-19139.	3.1	13
53	Cooperative Bond Scission in a Soft Porous Crystal Enables Discriminatory Gate Opening for Ethylene over Ethane. Journal of the American Chemical Society, 2017, 139, 18313-18321.	13.7	72
54	The Suzuki–Miyaura Coupling of Nitroarenes. Journal of the American Chemical Society, 2017, 139, 9423-9426.	13.7	158

#	Article	IF	CITATIONS
55	Transitionâ€Metalâ€Mediated Cleavage of Fluoroâ€6ilanes under Mild Conditions. Chemistry - A European Journal, 2016, 22, 2370-2375.	3.3	30
56	Theoretical Study of Hydrogenation Catalysis of Phosphorus Compound and Prediction of Catalyst with High Activity and Wide Application Scope. ACS Catalysis, 2016, 6, 4859-4870.	11.2	26
57	Cooperative Catalysis of Combined Systems of Transitionâ€Metal Complexes with Lewis Acids: Theoretical Understanding. Chemical Record, 2016, 16, 2405-2425.	5.8	42
58	Catalytic Hydrogenation of Carbon Dioxide with Ammonia–Borane by Pincer-Type Phosphorus Compounds: Theoretical Prediction. Journal of the American Chemical Society, 2016, 138, 13481-13484.	13.7	41
59	<i>para</i> -Selective Alkylation of Benzamides and Aromatic Ketones by Cooperative Nickel/Aluminum Catalysis. Journal of the American Chemical Society, 2016, 138, 14699-14704.	13.7	149
60	Theoretical Study of Pd ₁₁ Si ₆ Nanosheet Compounds Including Seven oordinated Si Species and Its Ge Analogues. Chemistry - A European Journal, 2016, 22, 1076-1087.	3.3	13
61	Transition-Metal-Mediated Germanium–Fluorine Activation: Inverse Electron Flow in σ-Bond Metathesis. Organometallics, 2016, 35, 713-719.	2.3	34
62	Theoretical and Computational Study of a Complex System Consisting of Transition Metal Element(s): How to Understand and Predict Its Geometry, Bonding Nature, Molecular Property, and Reaction Behavior. Bulletin of the Chemical Society of Japan, 2015, 88, 889-938.	3.2	34
63	Activation of Strong Boron–Fluorine and Silicon–Fluorine σâ€Bonds: Theoretical Understanding and Prediction. Chemistry - A European Journal, 2015, 21, 13588-13597.	3.3	20
64	Heterolytic Activation of Dihydrogen Molecule by Hydroxo-/Sulfido-Bridged Ruthenium–Germanium Dinuclear Complex. Theoretical Insights. Inorganic Chemistry, 2015, 54, 576-585.	4.0	9
65	How Can We Understand Au ₈ Cores and Entangled Ligands of Selenolate- and Thiolate-Protected Gold Nanoclusters Au ₂₄ (ER) ₂₀ and Au ₂₀ (ER) ₁₆ (E = Se, S; R = Ph, Me)? A Theoretical Study. Journal of the American Chemical Society, 2015, 137, 8593-8602.	13.7	25
66	Evaluation of the Ïf-Donation from Group 11 Metals (Cu, Ag, Au) to Silane, Germane, and Stannane Based on the Experimental/Theoretical Systematic Approach. Organometallics, 2015, 34, 1440-1448.	2.3	46
67	A molecular level study of selective cation capture by a host–guest mechanism for 25,26,27,28-tetramethoxycalix[4]arene in MClO ₄ solution (MÂ=ÂNa, K). Molecular Simulation, 2015, 41, 881-891.	2.0	1
68	Reasons Two Nonstrained C–C σ-Bonds Can Be Easily Cleaved in Decyanative [4 + 2] Cycloaddition Catalyzed by Nickel(0)/Lewis Acid Systems. Theoretical Insight. ACS Catalysis, 2015, 5, 1-10.	11.2	55
69	Effects of PAr ₃ Ligands on Direct Arylation of Heteroarenes with Isolated [Pd(2,6-Me ₂ C ₆ H ₃)(μ-O ₂ CMe)(PAr ₃)] _{4< Complexes. Organometallics, 2014, 33, 6247-6252.}	\ 31.tb >	28
70	Catalytic Transfer Hydrogenation by a Trivalent Phosphorus Compound: Phosphorusâ€Ligand Cooperation Pathway or P ^{III} /P ^V Redox Pathway?. Angewandte Chemie - International Edition, 2014, 53, 4633-4637.	13.8	57
71	Interaction of Various Gas Molecules with Paddle-Wheel-Type Open Metal Sites of Porous Coordination Polymers: Theoretical Investigation. Inorganic Chemistry, 2014, 53, 2417-2426.	4.0	21
72	Efficient Catalyst for Acceptorless Alcohol Dehydrogenation: Interplay of Theoretical and Experimental Studies. ACS Catalysis, 2014, 4, 1010-1020.	11.2	151

#	Article	IF	CITATIONS
73	Self-Accelerating CO Sorption in a Soft Nanoporous Crystal. Science, 2014, 343, 167-170.	12.6	434
74	Synthesis, Geometry, and Bonding Nature of Heptacoordinate Compounds of Silicon and Germanium Featuring Three Phosphine Donors. Organometallics, 2014, 33, 6557-6567.	2.3	24
75	Can One Ï f^* -Antibonding Orbital Interact with Six Electrons of Lewis Bases? Analysis of a Multiply Interacting Ï f^* Orbital. Organometallics, 2014, 33, 5960-5963.	2.3	14
76	The important role of the Mo–Mo quintuple bond in catalytic synthesis of benzene from alkynes. A theoretical study. Dalton Transactions, 2014, 43, 11478-11492.	3.3	21
77	Generation of Dihydrogen Molecule and Hydrosilylation of Carbon Dioxide Catalyzed by Zinc Hydride Complex: Theoretical Understanding and Prediction. Inorganic Chemistry, 2014, 53, 8485-8493.	4.0	43
78	The crucial roles of MgCl ₂ as a non-innocent additive in the Ni-catalyzed carboxylation of benzyl halide with CO ₂ . Chemical Communications, 2014, 50, 13026-13029.	4.1	47
79	Nickel-Catalyzed Double Carboxylation of Alkynes Employing Carbon Dioxide. Organic Letters, 2014, 16, 4960-4963.	4.6	96
80	Theoretical Study of One-Electron Oxidized Mn(III)– and Ni(II)–Salen Complexes: Localized vs Delocalized Ground and Excited States in Solution. Journal of Chemical Theory and Computation, 2014, 10, 1062-1073.	5.3	22
81	Ïf-Bond Activation of Small Molecules and Reactions Catalyzed by Transition-Metal Complexes: Theoretical Understanding of Electronic Processes. Inorganic Chemistry, 2014, 53, 6444-6457.	4.0	60
82	DRIFT and Theoretical Studies of Ethylene/Ethane Separation on Flexible and Microporous [Cu ₂ (2,3â€pyrazinedicarboxylate) ₂ (pyrazine)] <i>_n</i> . European Journal of Inorganic Chemistry, 2014, 2014, 2747-2752.	2.0	28
83	Theoretical Mechanistic Study of Novel Ni(0)-Catalyzed [6 – 2 + 2] Cycloaddition Reactions of Isatoic Anhydrides with Alkynes: Origin of Facile Decarboxylation. Organometallics, 2013, 32, 7564-7574.	2.3	24
84	Factors Controlling the Reactivity of Heteroarenes in Direct Arylation with Arylpalladium Acetate Complexes. Organometallics, 2013, 32, 4423-4430.	2.3	47
85	The crucial role of a Ni(i) intermediate in Ni-catalyzed carboxylation of aryl chloride with CO2: a theoretical study. Chemical Communications, 2013, 49, 10715.	4.1	62
86	A theoretical study of luminescent vapochromic compounds including an AuCu2(NHC)2 core. Dalton Transactions, 2013, 42, 4809.	3.3	7
87	Unexpected Electronic Process of H ₂ Activation by a New Nickel Borane Complex: Comparison with the Usual Homolytic and Heterolytic Activations. Inorganic Chemistry, 2013, 52, 2844-2853.	4.0	64
88	Absorption of CO ₂ and CS ₂ into the Hofmann-Type Porous Coordination Polymer: Electrostatic versus Dispersion Interactions. Journal of the American Chemical Society, 2013, 135, 4840-4849.	13.7	72
89	A 3D-RISM-SCF method with dual solvent boxes for a highly polarized system: application to 1,6-anhydrosugar formation reaction of phenyl α- and I²-d-glucosides under basic conditions. Physical Chemistry Chemical Physics, 2013, 15, 6368.	2.8	11
90	Theoretical Study of Reactivity of Ge(II)-hydride Compound: Comparison with Rh(I)-Hydride Complex and Prediction of Full Catalytic Cycle by Ge(II)-hydride. Journal of the American Chemical Society, 2013, 135, 8955-8965.	13.7	41

#	Article	IF	CITATIONS
91	Levoglucosan Formation from Crystalline Cellulose: Importance of a Hydrogen Bonding Network in the Reaction. ChemSusChem, 2013, 6, 2356-2368.	6.8	74
92	Evaluation Procedure of Electrostatic Potential in 3D-RISM-SCF Method and Its Application to Hydrolyses of Cis- and Transplatin Complexes. Journal of Physical Chemistry B, 2012, 116, 13045-13062.	2.6	27
93	Complicated Electronic Process of C–C σ-Bond Activation of Cyclopropene by Ruthenium and Iridium Complexes: Theoretical Study. Organometallics, 2012, 31, 8189-8199.	2.3	5
94	Theoretical Study of Dihydrogen Activation by a Trinuclear Ruthenium μ3-Imido Complex. Organometallics, 2012, 31, 5342-5348.	2.3	7
95	Theoretical Study on the Transition-Metal Oxoboryl Complex: M–BO Bonding Nature, Mechanism of the Formation Reaction, and Prediction of a New Oxoboryl Complex. Inorganic Chemistry, 2012, 51, 4597-4605.	4.0	32
96	Systematic assessment on aqueous p <i>K</i> _a and p <i>K</i> _b of an amino acid base on RISMâ€SCFâ€SEDD method: Toward first principles calculations. International Journal of Quantum Chemistry, 2012, 112, 103-112.	2.0	6
97	Syntheses and Luminescent Properties of 3,5-Diphenylpyrazolato-Bridged Heteropolynuclear Platinum Complexes. The Influence of Chloride Ligands on the Emission Energy Revealed by the Systematic Replacement of Chloride Ligands by 3,5-Dimethylpyrazolate. Inorganic Chemistry, 2012, 51, 7977-7992.	4.0	29
98	Twoâ€step evaluation of binding energy and potential energy surface of van der Waals complexes. Journal of Computational Chemistry, 2012, 33, 617-628.	3.3	18
99	Theoretical Study of I_f -Bond Activation Reactions and Catalytic Reactions by Transition Metal Complexes. , 2012, , 391-434.		7
100	Theoretical study on aquation reaction of cis-platin complex: RISM–SCF–SEDD, a hybrid approach of accurate quantum chemical method and statistical mechanics. Dalton Transactions, 2011, 40, 11125.	3.3	20
101	Theoretical Study of Pt(PR ₃) ₂ (AlCl ₃) (R = H, Me, Ph, or Cy) Including an Unsupported Bond between Transition Metal and Non-transition Metal Elements: Geometry, Bond Strength, and Prediction. Journal of Physical Chemistry A, 2011, 115, 8520-8527.	2.5	9
102	Theoretical Study of Magnesium Fluoride in Aqueous Solution. Journal of Physical Chemistry B, 2011, 115, 10553-10559.	2.6	13
103	Noble Reaction Features of Bromoborane in Oxidative Addition of B–Br σ-Bond to [M(PMe ₃) ₂] (M = Pt or Pd): Theoretical Study. Inorganic Chemistry, 2011, 50, 5290-5297.	4.0	29
104	Solvation structure of coronene–transition metal complex: a RISM-SCF study. Physical Chemistry Chemical Physics, 2011, 13, 309-313.	2.8	20
105	Theoretical study on high-spin to low-spin transition of {Fe(pyrazine)[Pt(CN)4]}: Guest-induced entropy decrease. Chemical Physics Letters, 2011, 511, 399-404.	2.6	24
106	Synthesis, Structure, and Bonding Nature of Ethynediyl-Bridged Bis(silylene) Dinuclear Complexes of Tungsten and Molybdenum. Organometallics, 2011, 30, 4515-4531.	2.3	22
107	Binding energy of gas molecule with two pyrazine molecules as organic linker in metal–organic framework: its theoretical evaluation and understanding of determining factors. Theoretical Chemistry Accounts, 2011, 130, 475-482.	1.4	11
108	Theoretical and computational studies of organometallic reactions: successful or not?. Chemical Record, 2010, 10, 29-45.	5.8	31

#	Article	IF	CITATIONS
109	Experimental and Theoretical Study of a Tungsten Dihydride Silyl Complex: New Insight into Its Bonding Nature and Fluxional Behavior. Organometallics, 2010, 29, 6267-6281.	2.3	23
110	Aqueous Solvation of <i>p</i> -Aminobenzonitrile in the Excited States: A Molecular Level Theory on Density Dependence. Journal of Physical Chemistry B, 2010, 114, 910-914.	2.6	15
111	RISM-SCF-SEDD Study on the Symmetry Breaking of Carbonate and Nitrate Anions in Aqueous Solution. Journal of Physical Chemistry B, 2010, 114, 10513-10519.	2.6	28
112	Theoretical Study of Excited States of Pyrazolate- and Pyridinethiolate-Bridged Dinuclear Platinum(II) Complexes: Relationship between Geometries of Excited States and Phosphorescence Spectra. Inorganic Chemistry, 2010, 49, 8977-8985.	4.0	25
113	Theoretical Study of 1,6-Anhydrosugar Formation from Phenyld-Glucosides under Basic Condition: Reasons for Higher Reactivity of β-Anomer. Journal of Organic Chemistry, 2010, 75, 8400-8409.	3.2	9
114	{2 + 2} Cycloaddition of Alkyne with Titaniumâ^'Imido Complex: Theoretical Study of Determining Factor of Reactivity and Regioselectivity. Journal of Physical Chemistry A, 2010, 114, 659-665.	2.5	17
115	Pd(ii)-promoted direct cross-coupling reaction of arenes via highly regioselective aromatic C–H activation: a theoretical study. Dalton Transactions, 2010, 39, 3279.	3.3	55
116	Ab initio study on SN2 reaction of methyl p-nitrobenzenesulfonate and chloride anion in [mmim][PF6]. Physical Chemistry Chemical Physics, 2010, 12, 1822.	2.8	23
117	Analytical energy gradient for reference interaction site model self-consistent field explicitly including spatial electron density distribution. Journal of Chemical Physics, 2009, 131, 214504.	3.0	40
118	Generalization of the New Resonance Theory: Second Quantization Operator, Localization Scheme, and Basis Set. Journal of Chemical Theory and Computation, 2009, 5, 1741-1748.	5.3	10
119	A systematic understanding of orbital energy shift in polar solvent. Journal of Chemical Physics, 2009, 130, 044107.	3.0	12
120	Luminescent Heteropolynuclear Complexes of 3,5â€Dimethylpyrazolate [Pt ₂ Au ₂ M ₂ (Me ₂ pz) ₈] (M=Ag, Cu) Showing the Synergistic Effect of Three Transition Elements in the Excited State. Chemistry - A European Journal, 2009, 15, 4238-4242.	3.3	28
121	Bidirectional Chemoâ€Switching of Spin State in a Microporous Framework. Angewandte Chemie - International Edition, 2009, 48, 4767-4771.	13.8	474
122	Theoretical investigation of μâ€Oâ€bridged dinuclear Re complexes: Electronic structure, bonding nature, and absorption spectra. International Journal of Quantum Chemistry, 2009, 109, 2319-2327.	2.0	1
123	A theoretical study of the liquid structure of nitromethane with RISM method. Journal of Molecular Liquids, 2009, 147, 9-12.	4.9	11
124	Theoretical Study of Dioxygen Binding Process in Iron(III) Catechol Dioxygenase: "Oxygen Activation― vs "Substrate Activation― Journal of Physical Chemistry B, 2009, 113, 4826-4836.	2.6	17
125	Oxygen Atom Transfer Reactions of Iridium and Osmium Complexes: Theoretical Study of Characteristic Features and Significantly Large Differences Between These Two Complexes. Inorganic Chemistry, 2009, 48, 8154-8163.	4.0	37
126	First Principle Theory for p <i>K</i> _a Prediction at Molecular Level: pH Effects Based on Explicit Solvent Model. Journal of Physical Chemistry B, 2009, 113, 10509-10514.	2.6	13

#	Article	IF	CITATIONS
127	How to Stabilize η ³ -Silapropargyl/Alkynylsilyl Complex of [CpL ₂ M] ⁺ (<i>L</i> = CO, PMe ₃ , or PF _{3} and M =) ⁻	[jETEQ:q1]	1 0. 28 4314 rgf
128	Bonding Nature of Open-Lantern-type Dinuclear Cr(II) Complexes. Theoretical Study with the MRMP2 Method. Journal of Physical Chemistry A, 2009, 113, 3202-3209.	2.5	15
129	Thermal Degradation of Methyl β- <scp>d</scp> -Glucoside. A Theoretical Study of Plausible Reaction Mechanisms. Journal of Organic Chemistry, 2009, 74, 6891-6894.	3.2	65
130	New Palladium(II) Complex of P,S-Containing Hybrid Calixphyrin. Theoretical Study of Electronic Structure and Reactivity for Oxidative Addition. Journal of the American Chemical Society, 2009, 131, 10955-10963.	13.7	32
131	Carbon dioxide capture at the molecular level. Physical Chemistry Chemical Physics, 2009, 11, 8556.	2.8	33
132	A Theoretical Study of Nickel(0)-Catalyzed Phenylcyanation of Alkynes. Reaction Mechanism and Regioselectivity. Organometallics, 2009, 28, 2583-2594.	2.3	60
133	Theoretical prediction of O–H, Si–H, and Si–C σ-bond activation reactions by titanium(IV)–imido complex. Canadian Journal of Chemistry, 2009, 87, 1415-1424.	1.1	6
134	A Theoretical Analysis of a Dielsâ ``Alder Reaction in Ionic Liquids. Journal of Physical Chemistry B, 2009, 113, 8227-8230.	2.6	47
135	Solvation effects in oxidative addition reaction of Methyliodide to Pt(II) complex: A theoretical study with RISM–SCF method. Chemical Physics Letters, 2008, 458, 329-332.	2.6	35
136	Frontier Orbital Consistent Quantum Capping Potential (FOC-QCP) for Bulky Ligand of Transition Metal Complexes. Journal of Physical Chemistry A, 2008, 112, 1946-1955.	2.5	20
137	Heteropolynuclear Complexes of 3,5-Dimethylpyrazolate [Pt ₂ M ₄ (Me ₂ pz) ₈] (M = Ag, Cu). Highly Luminescent Character of the Triplet Excited State Based on Mixed-Metal Cores. Inorganic Chemistry, 2008, 47, 5033-5035.	4.0	49
138	Synthesis of Thiophene-Containing Hybrid Calixphyrins of the 5,10-Porphodimethene Type. Journal of Organic Chemistry, 2008, 73, 5139-5142.	3.2	22
139	Why Does Fluoride Anion Accelerate Transmetalation between Vinylsilane and Palladium(II)â^'Vinyl Complex? Theoretical Study. Journal of the American Chemical Society, 2008, 130, 12975-12985.	13.7	88
140	Theoretical Study of Pyrazolate-Bridged Dinuclear Platinum(II) Complexes: Interesting Potential Energy Curve of the Lowest Energy Triplet Excited State and Phosphorescence Spectra. Inorganic Chemistry, 2008, 47, 4329-4337.	4.0	51
141	Syntheses, Structures, and Coordination Chemistry of Phosphole-Containing Hybrid Calixphyrins:Â Promising Macrocyclic P,N2,X-Mixed Donor Ligands for Designing Reactive Transition-Metal Complexes. Journal of the American Chemical Society, 2008, 130, 990-1002.	13.7	85
142	Theoretical Study of Câ^'H and Nâ^'H Ïf-Bond Activation Reactions by Titinium(IV)-Imido Complex. Good Understanding Based on Orbital Interaction and Theoretical Proposal for Nâ^'H Ïf-Bond Activation of Ammonia. Journal of the American Chemical Society, 2007, 129, 8615-8624.	13.7	65
143	Theoretical Study of Oxidative Additions of H ₂ and MeCN to a Nickel(0) Complex: Significantly Large Correlation Effects and Characteristic Features of the Reaction. Journal of Physical Chemistry A, 2007, 111, 7915-7924.	2.5	27
144	New generation of the reference interaction site model self-consistent field method: Introduction of spatial electron density distribution to the solvation theory. Journal of Chemical Physics, 2007, 126, 244504.	3.0	103

#	Article	IF	CITATIONS
145	Binding Energy of Transition-Metal Complexes with Large Ï€-Conjugate Systems. Density Functional Theory vs Post-Hartreeâ^'Fock Methods. Journal of Physical Chemistry A, 2007, 111, 7124-7132.	2.5	42
146	The barrier origin on the reaction of CO2+OHâ^' in aqueous solution. Chemical Physics Letters, 2007, 443, 264-268.	2.6	35
147	Binding energies and bonding nature of MX(CO)(PH3)2(C60) (M=Rh or Ir; X=H or Cl): Theoretical study. Journal of Organometallic Chemistry, 2007, 692, 299-306.	1.8	22
148	Theoretical Study of Rhenium Dinuclear Complexes:Â Reâ^'Re Bonding Nature and Electronic Structure. Journal of Physical Chemistry A, 2006, 110, 9710-9717.	2.5	42
149	Analysis on Solvated Molecules with a New Energy Partitioning Scheme for Intra- and Intermolecular Interactions. Journal of Physical Chemistry B, 2006, 110, 12714-12720.	2.6	18
150	Ruthenium(II)-Catalyzed Hydrogenation of Carbon Dioxide to Formic Acid. Theoretical Study of Significant Acceleration by Water Molecules. Organometallics, 2006, 25, 3352-3363.	2.3	96
151	Phosphorus-Containing Hybrid Calixphyrins:Â Promising Mixed-Donor Ligands for Visible and Efficient Palladium Catalysts. Journal of the American Chemical Society, 2006, 128, 11760-11761.	13.7	71
152	Discrete Sandwich Compounds of Monolayer Palladium Sheets. Science, 2006, 313, 1104-1107.	12.6	182
153	Theoretical Study of Cp2Zr-, (MeO)2Zr-, and M(PH3)-Mediated Coupling Reactions of Acetylenes (M = Ni,) Tj ETQc 2005, 24, 2129-2140.	1 1 0.784 2.3	314 rgBT 0 16
154	Theoretical Study of Silyl-Bridged Dinuclear Palladium(I) and Platinum(I) Complexes, M2(μ-η2-H···SiH2)2(PH3)2(M = Pd or Pt). New Insight into the Bonding Nature. Organometallics, 2005, 24, 4029-4038.	2.3	18
155	Theoretical Study of M(PH3)2Complexes of C60, Corannulene (C20H10), and Sumanene (C21H12) (M = Pd) Tj ET 8055-8063.	Qq1 1 0.7 2.5	84314 rg81 56
156	Ruthenium(II)-Catalyzed Hydrogenation of Carbon Dioxide to Formic Acid. Theoretical Study of Real Catalyst, Ligand Effects, and Solvation Effects. Journal of the American Chemical Society, 2005, 127, 4021-4032.	13.7	183
157	Theoretical Study of Trans-metalation Process in Palladium-Catalyzed Borylation of Iodobenzene with Diboron. Journal of the American Chemical Society, 2004, 126, 10457-10471.	13.7	153
158	Distortion of Electronic Structure in Solvated Molecules:Â Tautomeric Equilibrium of 2-Pyridone and 2-Hydroxypridine in Water Studied by the RISM-SCF Method. Journal of Physical Chemistry A, 2004, 108, 2097-2102.	2.5	28
159	Theoretical Study of the Cp2Zr-Catalyzed Hydrosilylation of Ethylene. Reaction Mechanism Including New σ-Bond Activation. Journal of the American Chemical Society, 2004, 126, 3332-3348.	13.7	105
160	Comparison of Electronic Structure Theories for Solvated Molecules:  RISM-SCF versus PCM. Journal of Physical Chemistry A, 2004, 108, 1629-1634.	2.5	53
161	Iridium-Catalyzed Borylation of Benzene with Diboron. Theoretical Elucidation of Catalytic Cycle Including Unusual Iridium(V) Intermediate. Journal of the American Chemical Society, 2003, 125, 16114-16126.	13.7	266
162	Hydrogenation of Carbon Dioxide. Catalysis By Metal Complexes, 2002, , 79-105.	0.6	2

#	Article	IF	CITATIONS
163	Theoretical Study of Rhodium(III)-Catalyzed Hydrogenation of Carbon Dioxide into Formic Acid. Significant Differences in Reactivity among Rhodium(III), Rhodium(I), and Ruthenium(II) Complexes. Journal of the American Chemical Society, 2002, 124, 7588-7603.	13.7	103
164	Synthesis of a new copper(i) complex, [Cu(tmdcbpy)2]+ (tmdcbpy =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 707 T Transactions RSC, 2002, , 840.	d (4,4′, 2.3	6,6′-tetra 105
165	Why Does the Rhodium-Catalyzed Hydrosilylation of Alkenes Take Place through a Modified Chalkâ°'Harrod Mechanism? A Theoretical Study. Organometallics, 2002, 21, 3788-3802.	2.3	110
166	Why Is the Nickel(II) Diphenyldiimine Complex the Best Catalyst for Polymerization of Ethylene in Three Kinds of Cationic Nickel(II) Complexes, [Ni(CH3)L]+ (L = Diphenyldiimine, 2,2â€~-Bipyridine, or) Tj ETQq0 0 0 rgBT	/Øværlock	1203Tf 50 61
167	Theory of emission state of tris(8-quinolinolato)aluminum and its related compounds. Journal of Applied Physics, 2001, 90, 6092-6097.	2.5	44
168	Modulating fluorescence of 8-quinolinolato compounds by functional groups: A theoretical study. Applied Physics Letters, 2001, 79, 2348-2350.	3.3	27
169	Platinum(II) Hydride Silanone Complexes and Cyclic Trimers of Silanone. A Theoretical Study of Their Geometries, Bonding Nature, and Stabilities. Organometallics, 2001, 20, 3896-3905.	2.3	9
170	Participation of (η3-Allyl)ruthenium(II) Complexes in Câ^'C Bond Formation and Câ^'C Bond Cleavage. A Theoretical Study. Organometallics, 2001, 20, 3145-3158.	2.3	16
171	Can Cp2Zr(C2H4) Easily React with Hydrosilane? Theoretical Study. Chemistry Letters, 2001, 30, 1222-1223.	1.3	8
172	M2E2 four-member ring structure, M2(μ-EH2)2(P2)2 (M=Pd or Pt; E=Si or Ge; P2=(PH3)2 or) Tj ETQq0 0 0 rgBT study. Journal of Organometallic Chemistry, 2001, 635, 173-186.	/Overlock 1.8	10 Tf 50 38 28
173	Bonding nature and reaction behavior of inter-element linkages with transition metal complexes. A theoretical study. Journal of Organometallic Chemistry, 2000, 611, 288-298.	1.8	45
174	Theoretical Study of Ruthenium-Catalyzed Hydrogenation of Carbon Dioxide into Formic Acid. Reaction Mechanism Involving a New Type of Ïf-Bond Metathesis. Journal of the American Chemical Society, 2000, 122, 3867-3877.	13.7	132
175	Câ^'H Bond Activation of Benzene and Methane by M(η2-O2CH)2 (M = Pd or Pt). A Theoretical Study. Organometallics, 2000, 19, 3895-3908.	2.3	205
176	Pt-catalyzed hydrosilylation of ethylene. A theoretical study of the reaction mechanism. Coordination Chemistry Reviews, 1999, 190-192, 933-960.	18.8	60
177	Acetylene-insertion reactions into Pt(II)-H and Pt(II)-SiH 3 bonds. An ab initio MO study and analysis based on the vibronic coupling model. Theoretical Chemistry Accounts, 1999, 102, 377-384.	1.4	16
178	Platinum-catalyzed hydrosilylation of ethylene. A theoretical study on the reaction mechanism involving cis–trans isomerization of PtH(SiH3)(PH3)2. Computational and Theoretical Chemistry, 1999, 461-462, 533-546.	1.5	27
179	Theoretical Study on σ-Bond Activation of (HO)2Bâ^'XH3by M(PH3)2(X = C, Si, Ge, or Sn; M = Pd or Pt). Noteworthy Contribution of the Boryl pĨ€Orbital to Mâ^'Boryl Bonding and Activation of the Bâ^'X σ-Bond. Organometallics, 1999, 18, 4825-4837.	2.3	93
180	Theoretical Study of the Structure, Bonding Nature, and Reductive Elimination Reaction of Pd(XH3)(η3-C3H5)(PH3) (X = C, Si, Ge, Sn). Hypervalent Behavior of Group 14 Elements. Organometallics, 1999, 18, 4015-4026.	2.3	50

#	Article	IF	CITATIONS
181	A Theoretical Study of the Câ^'H Activation of Methane Derivatives. Significant Effects of Electron-Withdrawing Substituents. Organometallics, 1998, 17, 1278-1289.	2.3	58
182	Insertion of carbon dioxide into a rhodium(III)–hydride bond: a theoretical study â€. Journal of the Chemical Society Dalton Transactions, 1998, , 577-584.	1.1	23
183	Remarkably Wide Range of Bond Distance Adjustment of d9â^'d9Pdâ^'Pd Interactions to Change in Coordination Environment. Journal of the American Chemical Society, 1998, 120, 4536-4537.	13.7	65
184	Theoretical Study of Platinum(0)-Catalyzed Hydrosilylation of Ethylene. Chalkâ^'Harrod Mechanism or Modified Chalkâ^'Harrod Mechanism. Organometallics, 1998, 17, 2510-2523.	2.3	157
185	Is a Transition State Planar or Nonplanar in Oxidative Additions of Câ^'H, Siâ^'H, Câ^'C, and Siâ^'C σ-Bonds to Pt(PH3)2? A Theoretical Study. Journal of Physical Chemistry A, 1998, 102, 8027-8036.	2.5	78
186	Detection of Potential Molecular Recognition Ability in Linear Poly(methyl acylate). Chemistry Letters, 1997, 26, 113-114.	1.3	14
187	Reaction of BX2â^'BX2(X = H or OH) with M(PH3)2(M = Pd or Pt). A Theoretical Study of the Characteristic Features. Inorganic Chemistry, 1997, 36, 226-229.	4.0	76
188	Oxidative addition of a C–H σ bond to M(PH3)2 (Mâ€=â€Pd or Pt). An ab initio molecular orbital study on t chelate phosphine effect. Journal of the Chemical Society Dalton Transactions, 1997, , 803-810.	he 1.1	35
189	Geometries, Bonding Nature, and Relative Stabilities of Dinuclear Palladium(I) π-Allyl and Mononuclear Palladium(II) π-Allyl Complexes. A Theoretical Study. Organometallics, 1997, 16, 2995-3003.	2.3	43
190	A theoretical study of platinum-catalyzed disilylation of alkene. Journal of Organometallic Chemistry, 1997, 535, 25-28.	1.8	23
191	Ptlî— Ptl bond energy in dinuclear Ptl complexes. A theoretical study. Chemical Physics Letters, 1997, 274, 543-548.	2.6	9
192	Ab Initio MO Study of the Geometry, η3â‡,, η1Conversion, and Reductive Elimination of a Palladium(II) η3-Allyl Hydride Complex and Its Platinum(II) Analogue. Organometallics, 1996, 15, 1713-1720.	2.3	38
193	New Insights into Structures, Stability, and Bonding of μ-Allyl Ligands Coordinated with Pdâ^'Pd and Pdâ^'Pt Fragments. Organometallics, 1996, 15, 2089-2097.	2.3	49
194	Photoinduced electron transfer between [Cu(dmphen)L2]+[dmphen = 2,9-dimethyl-1,10-phenanthroline, L = PPhn(C6H4OMe-p)3 –n(n= 0–3)] and methyl viologen. Journal of the Chemical Society Dalton Transactions, 1996, , 1909-1914.	1.1	31
195	A Theoretical Study on the Oxidative Addition of a Si–Hσ-Bond to [MCl(CO)(PH3)2] (M = Rh or Ir). Similarities to and Differences from [M′(PH3)2] (M′ = Pd or Pt) and [RhCl(PH3)2]. Bulletin of the Chemical Society of Japan, 1996, 69, 3047-3057.	3.2	18
196	A theoretical study on CO2 insertion into an M(bond)H bond (M = Rh and Cu). International Journal of Quantum Chemistry, 1996, 57, 481-491.	2.0	11
197	Formation of the Oxanickelacyclopentene Complex from Nickel(0), Carbon Dioxide, and Alkyne. Anab initioMO/SD-CI Study. Part II. Reactivity and Regioselectivity of Hydroxyacetylene. Bulletin of the Chemical Society of Japan, 1995, 68, 1873-1882.	3.2	25
198	Ab Initio MO Study of the CO2 Insertion into the Cu(I)-R Bond (R = H, CH3, or OH). Comparison between the CO2 Insertion and the C2H4 Insertion. Inorganic Chemistry, 1995, 34, 1914-1923.	4.0	44

#	Article	IF	Citations
199	A Theoretical Study on the Oxidative Addition of an Si-X Bond (X = H or Si) to M(PH3)2 (M = Pd or Pt). A Comparison of the Reactivity between Pt(PH3)2 and Pd(PH3)2. The Journal of Physical Chemistry, 1995, 99, 9933-9939.	2.9	31
200			

1

#	Article	IF	CITATIONS
217	Ab initio MO study of palladium-assisted nucleophilic attack on a coordinated olefin: semiquantitative understanding of the reaction and the mechanism of palladium acceleration. Inorganic Chemistry, 1987, 26, 2499-2505.	4.0	37
218	Successful photocatalytic reduction of methylviologen (MV2+) with $[Cu(NN)(PPh3)2]+(NN =) Tj ETQq0 0 0 rgBT$	Overlock 10 T 4.0 50	
	and a novel solvent effect on its catalytic activity. Inorganic Chemistry, 1986, 25, 2330-2333.		
219	Ab initio MO study of nickel(0) complexes: stereochemistry of Ni(PH3)2L (L = H2CO or (CO)2) and comparison of coordinate bonds of various ligands. Inorganic Chemistry, 1983, 22, 104-108.	4.0	34
220	Reaction paths of carbonyl insertion into the platinum(II)-methyl bond. An MO study. Journal of the American Chemical Society, 1983, 105, 2280-2286.	13.7	48
221	Structure and coordinate bonding nature of nickel(0) and copper(I) carbon dioxide complexes. An ab initio molecular orbital study. Inorganic Chemistry, 1982, 21, 760-765.	4.0	82
222	Bonding in Ni(PH3)2(C2H4) and Ni(PH3)2(C2H2). Ab initio SCF-MO study. Inorganic Chemistry, 1981, 20, 2292-2297.	4.0	57
223	Coordinate bonding nature and stereochemistry of platinum(0)-ethylene, -acetylene, and -carbon disulfide complexes. The Journal of Physical Chemistry, 1980, 84, 3390-3394.	2.9	7
224	A palladium-catalyzed reaction of a .piallyl ligand with a nucleophile. An MO study about a feature of the reaction and a ligand effect on the reactivity. Journal of the American Chemical Society, 1980, 102, 4062-4069.	13.7	48
225	Electronic structures and stereochemistry of some side-on dioxygen complexes. Inorganic Chemistry, 1978, 17, 3183-3188.	4.0	27

Heterolytic $\hat{I}f$ -Bond Activation by Transition Metal Complexes., 0, , 265-283.