
Sang Moon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11048610/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal–Organic Framework@Microporous Organic Network: Hydrophobic Adsorbents with a Crystalline Inner Porosity. Journal of the American Chemical Society, 2014, 136, 6786-6789.	13.7	200
2	Microporous Organic Network Hollow Spheres: Useful Templates for Nanoparticulate Co ₃ O ₄ Hollow Oxidation Catalysts. Journal of the American Chemical Society, 2013, 135, 19115-19118.	13.7	188
3	Nanoparticulate Iron Oxide Tubes from Microporous Organic Nanotubes as Stable Anode Materials for Lithium Ion Batteries. Angewandte Chemie - International Edition, 2012, 51, 6626-6630.	13.8	179
4	Tubular microporous organic networks bearing imidazolium salts and their catalytic CO ₂ conversion to cyclic carbonates. Chemical Communications, 2011, 47, 917-919.	4.1	157
5	Tandem Synthesis of Photoactive Benzodifuran Moieties in the Formation of Microporous Organic Networks. Angewandte Chemie - International Edition, 2013, 52, 6228-6232.	13.8	141
6	Microporous organic networks bearing metal-salen species for mild CO2 fixation to cyclic carbonates. Journal of Materials Chemistry A, 2013, 1, 5517.	10.3	110
7	Tubular-Shape Evolution of Microporous Organic Networks. Chemistry of Materials, 2012, 24, 3458-3463.	6.7	81
8	Hollow Microporous Organic Networks Bearing Triphenylamines and Anthraquinones: Diffusion Pathway Effect in Visible Light-Driven Oxidative Coupling of Benzylamines. ACS Macro Letters, 2015, 4, 669-672.	4.8	68
9	Thermally modulated multilayered graphene oxide for hydrogen storage. Physical Chemistry Chemical Physics, 2012, 14, 1480-1484.	2.8	67
10	Magnetically Separable Microporous Fe–Porphyrin Networks for Catalytic Carbene Insertion into N–H Bonds. ACS Catalysis, 2015, 5, 350-355.	11.2	67
11	Microporous organic nanorods with electronic push–pull skeletons for visible light-induced hydrogen evolution from water. Journal of Materials Chemistry A, 2014, 2, 7656.	10.3	60
12	Hollow Co@C prepared from a Co-ZIF@microporous organic network: magnetic adsorbents for aromatic pollutants in water. Chemical Communications, 2015, 51, 17724-17727.	4.1	60
13	Fe3O4 nanosphere@microporous organic networks: enhanced anode performances in lithium ion batteries through carbonization. Chemical Communications, 2014, 50, 7723.	4.1	57
14	Hollow and Microporous Zn–Porphyrin Networks: Outer Shape Dependent Ammonia Sensing by Quartz Crystal Microbalance. Chemistry of Materials, 2015, 27, 5845-5848.	6.7	54
15	Hollow and microporous catalysts bearing Cr(<scp>iii</scp>)–F porphyrins for room temperature CO ₂ fixation to cyclic carbonates. Journal of Materials Chemistry A, 2017, 5, 23612-23619.	10.3	49
16	Folate decorated hollow spheres of microporous organic networks as drug delivery materials. Chemical Communications, 2018, 54, 3652-3655.	4.1	48
17	Preparation of highly stable zeolite-alginate foam composite for strontium(90 Sr) removal from seawater and evaluation of Sr adsorption performance. Journal of Environmental Management, 2018, 205, 192-200.	7.8	48
18	Hollow structural effect of microporous organocatalytic polymers with pyrrolidines: dramatic enhancement of catalytic performance, Journal of Materials Chemistry A, 2017, 5, 8922-8926	10.3	45

#	Article	IF	CITATIONS
19	Triple-, Double-, and Single-Shelled Hollow Spheres of Sulfonated Microporous Organic Network as Drug Delivery Materials. Chemistry of Materials, 2019, 31, 300-304.	6.7	42
20	An organometallic approach for microporous organic network (MON)–Co ₃ O ₄ composites: enhanced stability as anode materials for lithium ion batteries. Chemical Communications, 2012, 48, 94-96.	4.1	40
21	Template synthesis of hollow MoS ₂ –carbon nanocomposites using microporous organic polymers and their lithium storage properties. Nanoscale, 2015, 7, 11280-11285.	5.6	38
22	Hollow and microporous triphenylamine networks post-modified with TCNE for enhanced organocathode performance. Chemical Communications, 2017, 53, 8778-8781.	4.1	37
23	Tandem generation of isocoumarins in hollow microporous organic networks: nitrophenol sensing based on visible light. Journal of Materials Chemistry A, 2016, 4, 8010-8014.	10.3	34
24	Hollow and Microporous Organic Polymers Bearing Sulfonic Acids: Antifouling Seed Materials for Polyketone Synthesis. ACS Macro Letters, 2016, 5, 1322-1326.	4.8	33
25	Investigation on the existence of optimum interlayer distance for H2 uptake using pillared-graphene oxide. International Journal of Hydrogen Energy, 2012, 37, 14217-14222.	7.1	32
26	Amphicharge‧torable Pyropolymers Containing Multitiered Nanopores. Advanced Energy Materials, 2017, 7, 1700629.	19.5	32
27	Enhancement of hydrogen storage capacity in polyaniline-vanadium pentoxide nanocomposites. International Journal of Hydrogen Energy, 2010, 35, 1300-1304.	7.1	31
28	Engineering of Sn–porphyrin networks on the silica surface: sensing of nitrophenols in water. Chemical Communications, 2015, 51, 8781-8784.	4.1	30
29	Hierarchically three-dimensional (3D) nanotubular sea urchin-shaped iron oxide and its application in heavy metal removal and solar-induced photocatalytic degradation. Journal of Hazardous Materials, 2018, 354, 283-292.	12.4	30
30	Fe ₃ O ₄ @Void@Microporous Organic Polymer-Based Multifunctional Drug Delivery Systems: Targeting, Imaging, and Magneto-Thermal Behaviors. ACS Applied Materials & Interfaces, 2020, 12, 37628-37636.	8.0	30
31	Hollow and sulfonated microporous organic polymers: versatile platforms for non-covalent fixation of molecular photocatalysts. RSC Advances, 2015, 5, 47270-47274.	3.6	29
32	Insights into the low surface area of conjugated microporous polymers and methodological suggestion for the enhancement of porosity. Polymer Chemistry, 2015, 6, 7363-7367.	3.9	29
33	Hyper-Cross-Linked Polymer on the Hollow Conjugated Microporous Polymer Platform: A Heterogeneous Catalytic System for Poly(caprolactone) Synthesis. ACS Macro Letters, 2019, 8, 687-693.	4.8	28
34	Energy storage of thermally reduced graphene oxide. International Journal of Hydrogen Energy, 2014, 39, 3799-3804.	7.1	26
35	Hydrophobic zeolites coated with microporous organic polymers: adsorption behavior of ammonia under humid conditions. Chemical Communications, 2015, 51, 11814-11817.	4.1	25
36	Thin and Small N-Doped Carbon Boxes Obtained from Microporous Organic Networks and Their Excellent Energy Storage Performance at High Current Densities in Coin Cell Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 3525-3532.	6.7	24

#	Article	IF	CITATIONS
37	Enhanced redox activity of a hollow conjugated microporous polymer through the generation of carbonyl groups by carbonylative Sonogashira coupling. Journal of Materials Chemistry A, 2018, 6, 6233-6237.	10.3	24
38	Conjugated macro–microporous polymer films bearing tetraphenylethylenes for the enhanced sensing of nitrotoluenes. Journal of Materials Chemistry A, 2018, 6, 17312-17317.	10.3	24
39	Skeleton Carbonylation of Conjugated Microporous Polymers by Osmium Catalysis for Amine-Rich Functionalization. ACS Macro Letters, 2018, 7, 1353-1358.	4.8	23
40	In Situ Water-Compatible Polymer Entrapment: A Strategy for Transferring Superhydrophobic Microporous Organic Polymers to Water. ACS Macro Letters, 2018, 7, 651-655.	4.8	22
41	Electrolyteâ€Dependent Sodium Ion Transport Behaviors in Hard Carbon Anode. Small, 2020, 16, 2001053.	10.0	22
42	Thin Coating of Microporous Organic Network Makes a Big Difference: Sustainability Issue of Ni Electrodes on the PET Textile for Flexible Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 36936-36943.	8.0	21
43	Porphyrin entrapment and release behavior of microporous organic hollow spheres: fluorescent alerting systems for existence of organic solvents in water. Chemical Communications, 2014, 50, 14885-14888.	4.1	19
44	Dual role of Cu ₂ 0 nanocubes as templates and networking catalysts for hollow and microporous Fe-porphyrin networks. Chemical Communications, 2017, 53, 2598-2601.	4.1	18
45	Nanoparticulate Conjugated Microporous Polymer with Postâ€Modified Benzils for Enhanced Pseudocapacitor Performance. Chemistry - A European Journal, 2020, 26, 12343-12348.	3.3	17
46	Network-controlled unique reactivities of carbonyl groups in hollow and microporous organic polymer. Chemical Communications, 2018, 54, 5134-5137.	4.1	16
47	A one building block approach for defect-enhanced conjugated microporous polymers: defect utilization for recyclable and catalytic biomass conversion. Journal of Materials Chemistry A, 2018, 6, 15553-15557.	10.3	16
48	Nanoparticulate and microporous solid acid catalysts bearing aliphatic sulfonic acids for biomass conversion. Chemical Communications, 2019, 55, 3697-3700.	4.1	16
49	Yolk–Shell Polystyrene@Microporous Organic Network: A Smart Template with Thermally Disassemblable Yolk To Engineer Hollow MoS ₂ /C Composites for High-Performance Supercapacitors. ACS Omega, 2017, 2, 7658-7665.	3.5	15
50	Valorization of Click-Based Microporous Organic Polymer: Generation of Mesoionic Carbene–Rh Species for the Stereoselective Synthesis of Poly(arylacetylene)s. Journal of the American Chemical Society, 2021, 143, 4100-4105.	13.7	15
51	Iron Coordination to Hollow Microporous Metalâ€Free Disalphen Networks: Heterogeneous Iron Catalysts for CO ₂ Fixation to Cyclic Carbonates. Chemistry - A European Journal, 2020, 26, 788-794.	3.3	14
52	Microporous Organic Nanoparticles Anchoring CeO ₂ Materials: Reduced Toxicity and Efficient Reactive Oxygen Speciesâ€6cavenging for Regenerative Wound Healing. ChemNanoMat, 2020, 6, 1104-1110.	2.8	13
53	Colloidal Template Synthesis of Nanomaterials by Using Microporous Organic Nanoparticles: The Case of C@MoS 2 Nanoadsorbents. Chemistry - an Asian Journal, 2019, 14, 3173-3180.	3.3	12
54	Aligned Tubular Conjugated Microporous Polymer Films for the Aggregationâ€Induced Emissionâ€Based Sensing of Explosives. Macromolecular Chemistry and Physics, 2019, 220, 1900157.	2.2	12

#	Article	IF	CITATIONS
55	Triboelectric energy harvesting using conjugated microporous polymer nanoparticles in polyurethane films. Journal of Materials Chemistry A, 2021, 9, 12560-12565.	10.3	12
56	Relationship between Multivalent Cation Charge Carriers and Organic Solvents on Nanoporous Carbons in 4ÂVâ€Window Magnesium Ion Supercapacitors. Advanced Energy Materials, 2021, 11, 2101054.	19.5	12
57	Noncovalent and covalent double assembly: unravelling a unified mechanism for the tubular shape evolution of microporous organic polymers. Journal of Materials Chemistry A, 2019, 7, 7859-7866.	10.3	11
58	The performance of green carbon as a backbone for hydrogen storage materials. International Journal of Hydrogen Energy, 2020, 45, 10516-10522.	7.1	11
59	Visible light-driven Suzuki–Miyaura reaction by self-supported Pd nanocatalysts in the formation of Stille coupling-based photoactive microporous organic polymers. Catalysis Science and Technology, 2020, 10, 5535-5543.	4.1	11
60	Fabrication of Poly(ethylene terephthalate) Fiber@Microporous Organic Polymer with Amino Groups@Cu Films for Flexible and Metal-Economical Electromagnetic Interference Shielding Materials. Langmuir, 2020, 36, 8745-8752.	3.5	11
61	Waste-induced pyrolytic carbon nanotube forest as a catalytic host electrode for high-performance aluminum metal anodes. Chemical Engineering Journal, 2022, 437, 135416.	12.7	11
62	Adhesive organic network films with a holey microstructure: useful platforms for the engineering of flexible energy devices. Journal of Materials Chemistry A, 2017, 5, 5696-5700.	10.3	10
63	Morphology engineering of a Suzuki coupling-based microporous organic polymer (MOP) using a Sonogashira coupling-based MOP for enhanced nitrophenol sensing in water. Chemical Communications, 2019, 55, 9515-9518.	4.1	10
64	Poly(ethylene terephthalate) Fibers with a Thin Layer of Clickâ€Based Microporous Organic Network: Enhanced Capture Performance toward PM _{2.5} . Advanced Materials Interfaces, 2018, 5, 1800628.	3.7	9
65	Nanoporous Organic Network Coating of Nanostructured Polymer Films with Enhanced Adsorption Performance toward Particulate Matter. ACS Applied Materials & Interfaces, 2019, 11, 1748-1753.	8.0	9
66	Unveiling the pseudocapacitive effects of ultramesopores on nanoporous carbon. Applied Surface Science, 2021, 537, 148037.	6.1	9
67	AB ₂ polymerization on hollow microporous organic polymers: engineering of solid acid catalysts for the synthesis of soluble cellulose derivatives. Polymer Chemistry, 2020, 11, 789-794.	3.9	8
68	Roomâ€Temperature Synthesis of a Hollow Microporous Organic Polymer Bearing Activated Alkyne IR Probes for Nonradical Thiolâ€yne Clickâ€Based Postâ€Functionalization. Chemistry - an Asian Journal, 2021, 16, 1398-1402.	3.3	8
69	Microporous organic network@PET hybrid membranes: removal of minute organic pollutants dissolved in water. RSC Advances, 2016, 6, 83942-83946.	3.6	7
70	Microporous Porphyrin Networks Mimicking a Velvet Worm Surface and Their Enhanced Sensitivities toward Hydrogen Chloride and Ammonia. ACS Applied Materials & Interfaces, 2018, 10, 6815-6819.	8.0	7
71	Microporous organic polymer-induced gel electrolytes for enhanced operation stability of electrochromic devices. Polymer Chemistry, 2019, 10, 455-459.	3.9	7
72	Concomitant shape and palladium engineering of hollow conjugated microporous photocatalysts to boost visible light-induced hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 22262-22268.	10.3	7

#	Article	IF	CITATIONS
73	Nanoseeded Catalytic Terpolymerization of CO, Ethylene, and Propylene by Size-Controlled SiO ₂ @Sulfonated Microporous Organic Polymer. Industrial & Engineering Chemistry Research, 2017, 56, 10235-10241.	3.7	6
74	Microporous organic network nanoparticles for dual chemo-photodynamic cancer therapy. Journal of Materials Chemistry B, 2019, 7, 4118-4123.	5.8	5
75	Effect of hydrogenated iron oxide nanoparticles with regular spherical shape by underwater plasma discharge treatment for high-efficiency water purification. Ceramics International, 2020, 46, 23582-23591.	4.8	5
76	Concomitant Covalent and Noncovalent Assembly: Self-Assembly of Sublimable Caffeine in the Formation of Microporous Organic Polymer for Morphology Evolution and Enhanced Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 13900-13907.	6.7	5
77	Enhancement of H2 uptake due to morphological modulation in vanadium pentoxide foam. International Journal of Hydrogen Energy, 2011, 36, 12887-12891.	7.1	4
78	Carbon black nanoparticle trapping: a strategy to realize the true energy storage potential of redox-active conjugated microporous polymers. Journal of Materials Chemistry A, 2021, 9, 17978-17984.	10.3	4
79	Oxidation Control of 5-Hydroxymethylfurfural to Polymer Building Blocks by Au Clusters and Nanoparticles on Hollow CeO ₂ Spheres. ACS Applied Nano Materials, 2022, 5, 4603-4608.	5.0	4
80	Effect of Oxygen for Enhancing the Gas Storage Performance of Activated Green Carbon. Energies, 2020, 13, 3893.	3.1	2
81	Defect-rich CeO ₂ in a hollow carbon matrix engineered from a microporous organic platform: a hydroxide-assisted high performance pseudocapacitive material. Nanoscale, 2021, 13, 18173-18181.	5.6	1
82	Relationship between Multivalent Cation Charge Carriers and Organic Solvents on Nanoporous Carbons in 4ÂVâ€Window Magnesium Ion Supercapacitors (Adv. Energy Mater. 30/2021). Advanced Energy Materials, 2021, 11, 2170122.	19.5	0