Simone Tisa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11047062/publications.pdf

Version: 2024-02-01

430874 642732 1,417 36 18 23 h-index citations g-index papers 36 36 36 1106 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 364-373.	2.9	198
2	SPAD Figures of Merit for Photon-Counting, Photon-Timing, and Imaging Applications: A Review. IEEE Sensors Journal, 2016, 16, 3-12.	4.7	161
3	100 000 Frames/s 64 \tilde{A} — 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 354-363.	2.9	144
4	A High-Linearity, 17 ps Precision Time-to-Digital Converter Based on a Single-Stage Vernier Delay Loop Fine Interpolation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 557-569.	5.4	143
5	Two-Dimensional SPAD Imaging Camera for Photon Counting. IEEE Photonics Journal, 2010, 2, 759-774.	2.0	96
6	Fast Sensing and Quenching of CMOS SPADs for Minimal Afterpulsing Effects. IEEE Photonics Technology Letters, 2013, 25, 776-779.	2.5	93
7	Variable-load quenching circuit for single-photon avalanche diodes. Optics Express, 2008, 16, 2232.	3.4	78
8	CMOS SPADs with up to 500 \hat{l} 4m diameter and 55% detection efficiency at 420 nm. Journal of Modern Optics, 2014, 61, 102-115.	1.3	77
9	Single-Photon Avalanche Diode Model for Circuit Simulations. IEEE Photonics Technology Letters, 2007, 19, 1922-1924.	2.5	67
10	Sub-Rayleigh Imaging via <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> -Photon Detection. Physical Review Letters, 2010, 105, 163602.	7.8	46
11	A Single-Photon Avalanche Camera for Fluorescence Lifetime Imaging Microscopy and Correlation Spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 344-353.	2.9	45
12	Imaging and certifying high-dimensional entanglement with a single-photon avalanche diode camera. Npj Quantum Information, 2020, 6, .	6.7	37
13	High-Speed Quantum Random Number Generation Using CMOS Photon Counting Detectors. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 23-29.	2.9	32
14	Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD. Proceedings of SPIE, 2011, 7905, .	0.8	27
15	Functional Fluorescence Microscopy Imaging: Quantitative Scanning-Free Confocal Fluorescence Microscopy for the Characterization of Fast Dynamic Processes in Live Cells. Analytical Chemistry, 2019, 91, 11129-11137.	6.5	25
16	A quantum-enhanced wide-field phase imager. Science Advances, 2021, 7, eabj2155.	10.3	23
17	Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm. Review of Scientific Instruments, 2013, 84, 123112.	1.3	22
18	Single-Photon Detectors Modeling and Selection Criteria for High-Background LiDAR. IEEE Sensors Journal, 2020, 20, 7021-7032.	4.7	19

#	Article	IF	CITATIONS
19	Fast single-photon imager acquires 1024 pixels at 100 kframe/s., 2009,,.		15
20	Time-resolved double-slit interference pattern measurement with entangled photons. Scientific Reports, 2014, 4, 4685.	3.3	15
21	Planar CMOS analog SiPMs: design, modeling, and characterization. Journal of Modern Optics, 2015, 62, 1693-1702.	1.3	14
22	Single-photon camera for high-sensitivity high-speed applications. Proceedings of SPIE, 2010, , .	0.8	8
23	Monolithic array of 32 SPAD pixels for single-photon imaging at high frame rates. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 610, 24-27.	1.6	7
24	SPAD arrays for parallel photon counting and timing. , 2010, , .		7
25	100 kframe/s 8 bit monolithic single-photon imagers. , 2008, , .		5
26	Quantitative confocal fluorescence microscopy of dynamic processes by multifocal fluorescence correlation spectroscopy., 2015, , .		4
27	Quantitative confocal fluorescence microscopy of dynamic processes by multifocal fluorescence correlation spectroscopy., 2015, , .		3
28	Low-noise CMOS SPAD arrays with in-pixel time-to-digital converters. , 2014, , .		2
29	Sub-Rayleigh Imaging via N-Photon Detection. , 2010, , .		2
30	High linearity SPAD and TDC array for TCSPC and 3D ranging applications. Proceedings of SPIE, 2015, , .	0.8	1
31	Time-to-digital converter card for multichannel time-resolved single-photon counting applications. , 2015, , .		1
32	SPAD detection head with 32 fully-parallel channels for time-tagging single-photons at 3μs., 2009,,.		0
33	A 32×32 photon counting camera. Optik & Photonik, 2011, 6, 43-46.	0.2	0
34	Time-resolved optical spectrometer based on a monolithic array of high-precision TDCs and SPADs. , 2013, , .		0
35	Experimental remote state preparation and estimation for spatial qubits. , 2013, , .		0
36	Fully CMOS analog and digital SiPMs. Proceedings of SPIE, 2015, , .	0.8	0