Alexandra Sevko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11046823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myeloid Cells and Related Chronic Inflammatory Factors as Novel Predictive Markers in Melanoma Treatment with Ipilimumab. Clinical Cancer Research, 2015, 21, 5453-5459.	7.0	304
2	Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17111-17116.	7.1	303
3	Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncolmmunology, 2015, 4, e1008371.	4.6	227
4	Antitumor Effect of Paclitaxel Is Mediated by Inhibition of Myeloid-Derived Suppressor Cells and Chronic Inflammation in the Spontaneous Melanoma Model. Journal of Immunology, 2013, 190, 2464-2471.	0.8	195
5	The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2. Molecular Cell, 2017, 65, 730-742.e5.	9.7	189
6	Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells <i>in vitro</i> in a TLR4-independent manner. Journal of Immunotoxicology, 2012, 9, 292-300.	1.7	124
7	Tumor Microenvironment and Myeloid-Derived Suppressor Cells. Cancer Microenvironment, 2013, 6, 169-177.	3.1	112
8	Melanoma-induced immunosuppression and its neutralization. Seminars in Cancer Biology, 2012, 22, 319-326.	9.6	106
9	Cyclophosphamide Promotes Chronic Inflammation–Dependent Immunosuppression and Prevents Antitumor Response in Melanoma. Journal of Investigative Dermatology, 2013, 133, 1610-1619.	0.7	91
10	Myeloid-Derived Suppressor Cells Interact with Tumors in Terms of Myelopoiesis, Tumorigenesis and Immunosuppression: Thick as Thieves. Journal of Cancer, 2013, 4, 3-11.	2.5	91
11	Tadalafil has biologic activity in human melanoma. Results of a pilot trial with <u>Ta</u> dalafil in patients with metastatic Melanoma (TaMe). Oncolmmunology, 2017, 6, e1326440.	4.6	74
12	Overcoming immunosuppression in the melanoma microenvironment induced by chronic inflammation. Cancer Immunology, Immunotherapy, 2012, 61, 275-282.	4.2	57
13	Skin Melanoma Development in ret Transgenic Mice Despite the Depletion of CD25+Foxp3+ Regulatory T Cells in Lymphoid Organs. Journal of Immunology, 2009, 183, 6330-6337.	0.8	55
14	Application of paclitaxel in low non-cytotoxic doses supports vaccination with melanoma antigens in normal mice. Journal of Immunotoxicology, 2012, 9, 275-281.	1.7	52
15	Myeloidâ€derived suppressor cells in malignant melanoma. JDDG - Journal of the German Society of Dermatology, 2014, 12, 1021-1027.	0.8	44
16	Histone deacetylase inhibitor-temozolomide co-treatment inhibits melanoma growth through suppression of Chemokine (C-C motif) ligand 2-driven signals. Oncotarget, 2014, 5, 4516-4528.	1.8	29
17	Myeloide Suppressorzellen (MDSC) beim malignen Melanom. JDDG - Journal of the German Society of Dermatology, 2014, 12, 1021-1027.	0.8	14
18	<i>Ret</i> transgenic mouse model of spontaneous skin melanoma: focus on regulatory <scp>T</scp> cells. Pigment Cell and Melanoma Research, 2013, 26, 457-463.	3.3	9