List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11045841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Where and When to Pay Attention: The Neural Systems for Directing Attention to Spatial Locations and to Time Intervals as Revealed by Both PET and fMRI. Journal of Neuroscience, 1998, 18, 7426-7435.	3.6	1,122
2	Top-down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences, 2012, 16, 129-135.	7.8	1,049
3	Word recognition in the human inferior temporal lobe. Nature, 1994, 372, 260-263.	27.8	759
4	Orienting Attention to Locations in Internal Representations. Journal of Cognitive Neuroscience, 2003, 15, 1176-1194.	2.3	549
5	Inter- and intra-individual variability in alpha peak frequency. NeuroImage, 2014, 92, 46-55.	4.2	460
6	Anticipated moments: temporal structure in attention. Nature Reviews Neuroscience, 2018, 19, 34-48.	10.2	401
7	The Large-Scale Neural Network for Spatial Attention Displays Multifunctional Overlap But Differential Asymmetry. NeuroImage, 1999, 9, 269-277.	4.2	319
8	Alpha Oscillations Related to Anticipatory Attention Follow Temporal Expectations. Journal of Neuroscience, 2011, 31, 14076-14084.	3.6	315
9	Synergistic Effect of Combined Temporal and Spatial Expectations on Visual Attention. Journal of Neuroscience, 2005, 25, 8259-8266.	3.6	300
10	Prioritizing Information during Working Memory: Beyond Sustained Internal Attention. Trends in Cognitive Sciences, 2017, 21, 449-461.	7.8	275
11	Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations. Journal of Neurophysiology, 2011, 105, 1318-1326.	1.8	228
12	The dynamics of shifting visuospatial attention revealed by event-related potentials. Neuropsychologia, 2000, 38, 964-974.	1.6	226
13	Orienting Attention Based on Long-Term Memory Experience. Neuron, 2006, 49, 905-916.	8.1	225
14	Attentional Modulation of Object Representations in Working Memory. Cerebral Cortex, 2007, 17, 2072-2083.	2.9	205
15	Shape-specific preparatory activity mediates attention to targets in human visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19569-19574.	7.1	166
16	Multiple mechanisms of selective attention: differential modulation of stimulus processing by attention to space or time. Neuropsychologia, 2002, 40, 2325-2340.	1.6	161
17	Heterogeneity of Cingulate Contributions to Spatial Attention. NeuroImage, 2001, 13, 1065-1072.	4.2	155
18	Directing spatial attention in mental representations: Interactions between attentional orienting and working-memory load. NeuroImage, 2005, 26, 733-743.	4.2	143

#	Article	IF	CITATIONS
19	Cognitive control of attention in the human brain: Insights from orienting attention to mental representations. Brain Research, 2006, 1105, 20-31.	2.2	133
20	Behavioural Dissociation between Exogenous and Endogenous Temporal Orienting of Attention. PLoS ONE, 2011, 6, e14620.	2.5	117
21	Sub-second "temporal attention―modulates alpha rhythms. A high-resolution EEG study. Cognitive Brain Research, 2004, 19, 259-268.	3.0	114
22	Age-Related Changes in Orienting Attention in Time. Journal of Neuroscience, 2011, 31, 12461-12470.	3.6	114
23	Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated α Oscillations. Journal of Neuroscience, 2017, 37, 437-445.	3.6	108
24	Combining spatial and temporal expectations to improve visual perception. Journal of Vision, 2014, 14, 8-8.	0.3	106
25	Electrophysiological studies of color processing in human visual cortex. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1993, 88, 343-355.	2.0	102
26	Temporal Dynamics of Attention during Encoding versus Maintenance of Working Memory: Complementary Views from Event-related Potentials and Alpha-band Oscillations. Journal of Cognitive Neuroscience, 2015, 27, 492-508.	2.3	99
27	Human gaze tracks attentional focusing in memorized visual space. Nature Human Behaviour, 2019, 3, 462-470.	12.0	98
28	Modulation of working-memory maintenance by directed attention. Neuropsychologia, 2011, 49, 1569-1577.	1.6	92
29	Oscillatory Brain State Predicts Variability in Working Memory. Journal of Neuroscience, 2014, 34, 7735-7743.	3.6	92
30	Attention Restores Discrete Items to Visual Short-Term Memory. Psychological Science, 2013, 24, 550-556.	3.3	89
31	Premembering Experience: A Hierarchy of Time-Scales for Proactive Attention. Neuron, 2019, 104, 132-146.	8.1	84
32	Spatial attention can bias search in visual short-term memory. Frontiers in Human Neuroscience, 2008, 1, 4.	2.0	74
33	Orienting attention to semantic categories. Neurolmage, 2006, 33, 1178-1187.	4.2	72
34	Time in Cortical Circuits. Journal of Neuroscience, 2015, 35, 13912-13916.	3.6	71
35	Distinct neural substrates for visual search amongst spatial versus temporal distractors. Cognitive Brain Research, 2003, 17, 368-379.	3.0	69
36	Markers of preparatory attention predict visual short-term memory performance. Neuropsychologia, 2011, 49, 1458-1465.	1.6	66

#	Article	IF	CITATIONS
37	Frontal and Parietal Cortical Interactions with Distributed Visual Representations during Selective Attention and Action Selection. Journal of Neuroscience, 2013, 33, 16443-16458.	3.6	62
38	Orienting Attention Within Visual Shortâ€Term Memory: Development and Mechanisms. Child Development, 2014, 85, 578-592.	3.0	59
39	Attention Modulates Initial Stages of Visual Word Processing. Journal of Cognitive Neuroscience, 2008, 20, 1727-1736.	2.3	58
40	Functionally dissociating temporal and motor components of response preparation in left intraparietal sulcus. NeuroImage, 2011, 54, 1221-1230.	4.2	49
41	Functional but not obligatory link between microsaccades and neural modulation by covert spatial attention. Nature Communications, 2022, 13, .	12.8	49
42	Attentional control constrains visual short-term memory: Insights from developmental and individual differences. Quarterly Journal of Experimental Psychology, 2012, 65, 277-294.	1.1	46
43	Output planning at the input stage in visual working memory. Science Advances, 2021, 7, .	10.3	46
44	Goal-directed and stimulus-driven selection of internal representations. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24590-24598.	7.1	44
45	The Two Sides of Temporal Orienting. Experimental Psychology, 2010, 57, 142-148.	0.7	43
46	Modulation of the pupillary response by the content of visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22802-22810.	7.1	42
47	Benefits of flexible prioritization in working memory can arise without costs Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 398-411.	0.9	42
48	Feature-based attentional weighting and spreading in visual working memory. Scientific Reports, 2017, 7, 42384.	3.3	37
49	Impaired corticomuscular and interhemispheric cortical beta oscillation coupling in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2018, 129, 1479-1489.	1.5	36
50	Imagery for shapes activates position-invariant representations in human visual cortex. NeuroImage, 2011, 56, 1540-1545.	4.2	35
51	Anticipatory neural dynamics of spatial-temporal orienting of attention in younger and older adults. NeuroImage, 2018, 178, 46-56.	4.2	35
52	Temporal orienting of attention can be preserved in normal aging Psychology and Aging, 2016, 31, 442-455.	1.6	30
53	Age Group and Individual Differences in Attentional Orienting Dissociate Neural Mechanisms of Encoding and Maintenance in Visual STM. Journal of Cognitive Neuroscience, 2014, 26, 864-877.	2.3	29
54	Temporal alignment of anticipatory motor cortical beta lateralisation in hidden visualâ€motor sequences. European Journal of Neuroscience, 2018, 48, 2684-2695.	2.6	28

#	Article	IF	CITATIONS
55	The Neural Dynamics of Fronto-Parietal Networks in Childhood Revealed using Magnetoencephalography. Cerebral Cortex, 2015, 25, 3868-3876.	2.9	27
56	Multiple spatial frames for immersive working memory. Nature Human Behaviour, 2022, 6, 536-544.	12.0	27
57	The neural system of language: structure and development. Current Opinion in Neurobiology, 1997, 7, 262-268.	4.2	26
58	Dissecting beta-state changes during timed movement preparation in Parkinson's disease. Progress in Neurobiology, 2020, 184, 101731.	5.7	25
59	Subliminally Presented and Stored Objects Capture Spatial Attention. Journal of Neuroscience, 2010, 30, 3567-3571.	3.6	22
60	Looking ahead in working memory to guide sequential behaviour. Current Biology, 2021, 31, R779-R780.	3.9	21
61	Temporal Expectations Prepare Visual Working Memory for Behavior. Journal of Cognitive Neuroscience, 2020, 32, 2320-2332.	2.3	20
62	Comparing the prioritization of items and feature-dimensions in visual working memory. Journal of Vision, 2020, 20, 25.	0.3	19
63	Purpose-Dependent Consequences of Temporal Expectations Serving Perception and Action. Journal of Neuroscience, 2020, 40, 7877-7886.	3.6	18
64	Shielding working-memory representations from temporally predictable external interference. Cognition, 2021, 217, 104915.	2.2	18
65	The tempos of performance. Current Opinion in Psychology, 2019, 29, 254-260.	4.9	17
66	Modelling distractor devaluation (DD) and its neurophysiological correlates. Neuropsychologia, 2009, 47, 2354-2366.	1.6	16
67	One Thing Leads to Another: Anticipating Visual Object Identity Based on Associative-Memory Templates. Journal of Neuroscience, 2020, 40, 4010-4020.	3.6	15
68	Distinct neural mechanisms of individual and developmental differences in VSTM capacity. Developmental Psychobiology, 2014, 56, 601-610.	1.6	13
69	Temporal Orienting of Attention. , 2005, , 257-263.		10
70	Eyes wide open: Regulation of arousal by temporal expectations. Cognition, 2022, 224, 105062.	2.2	9
71	Consequences of predictable temporal structure in multi-task situations. Cognition, 2022, 225, 105156.	2.2	7
72	Early behavioural facilitation by temporal expectations in complex visual-motor sequences. Journal of Physiology (Paris), 2016, 110, 487-496.	2.1	5

#	Article	IF	CITATIONS
73	Functional biases in attentional templates from associative memory. Journal of Vision, 2020, 20, 7.	0.3	5
74	Retrospective Attention Interacts with Stimulus Strength to Shape Working Memory Performance. PLoS ONE, 2016, 11, e0164174.	2.5	4
75	Neural markers of category-based selective working memory in aging. Neurolmage, 2019, 194, 163-173.	4.2	4
76	Early Behavioural Facilitation by Temporal Expectations in Complex Visual-motor Sequences. Neuroscience, 2018, 389, 74-84.	2.3	3
77	Orienting attention in time. Frontiers in Bioscience - Landmark, 2001, 6, d660-671.	3.0	1