
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11045823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proline-rich tyrosine kinase Pyk2 regulates deep vein thrombosis. Haematologica, 2022, 107, 1374-1383.	3.5	7
2	Platelet-derived extracellular vesicles regulate cell cycle progression and cell migration in breast cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118886.	4.1	23
3	Stimulation of mTORC2 by integrin αIIbβ3 is required for PI3Kβ-dependent activation of Akt but is dispensable for platelet spreading on fibrinogen. Platelets, 2020, 31, 521-529.	2.3	9
4	The proline-rich tyrosine kinase Pyk2 modulates integrin-mediated neutrophil adhesion and reactive oxygen species generation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118799.	4.1	6
5	Fibrillar amyloid peptides promote platelet aggregation through the coordinated action of ITAM―and ROSâ€dependent pathways. Journal of Thrombosis and Haemostasis, 2020, 18, 3029-3042.	3.8	8
6	Biology and Role of Extracellular Vesicles (EVs) in the Pathogenesis of Thrombosis. International Journal of Molecular Sciences, 2019, 20, 2840.	4.1	114
7	Amyloid Peptide <i>β</i> 1-42 Induces Integrin <i>α</i> Ilb <i>β</i> 3 Activation, Platelet Adhesion, and Thrombus Formation in a NADPH Oxidase-Dependent Manner. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-12.	4.0	27
8	Focal Adhesion Kinases in Platelet Function and Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 857-868.	2.4	26
9	Molecular mechanisms of platelet activation and aggregation induced by breast cancer cells. Cellular Signalling, 2018, 48, 45-53.	3.6	58
10	Amyloid precursor protein is required for in vitro platelet adhesion to amyloid peptides and potentiation of thrombus formation. Cellular Signalling, 2018, 52, 95-102.	3.6	26
11	Platelet amyloid precursor protein is a modulator of venous thromboembolism in mice. Blood, 2017, 130, 527-536.	1.4	64
12	5'UTR point substitutions and N-terminal truncating mutations of ANKRD26 in acute myeloid leukemia. Journal of Hematology and Oncology, 2017, 10, 18.	17.0	33
13	Release of Prometastatic Platelet-Derived Microparticles Induced by Breast Cancer Cells: A Novel Positive Feedback Mechanism for Metastasis. TH Open, 2017, 01, e155-e163.	1.4	23
14	Platelets in Neurological Disorders. , 2017, , 513-530.		7
15	Novel pharmacological inhibitors demonstrate the role of the tyrosine kinase Pyk2 in adhesion and aggregation of human platelets. Thrombosis and Haemostasis, 2016, 116, 904-917.	3.4	10
16	Increased platelet adhesion and thrombus formation in a mouse model of Alzheimer's disease. Cellular Signalling, 2016, 28, 1863-1871.	3.6	44
17	The focal adhesion kinase Pyk2 links Ca2+ signalling to Src family kinase activation and protein tyrosine phosphorylation in thrombin-stimulated platelets. Biochemical Journal, 2015, 469, 199-210.	3.7	31
18	PI3Kβ inhibition: all that glitters is not gold. Blood, 2015, 125, 750-751.	1.4	9

#	Article	IF	CITATIONS
19	Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimerââ,¬â"¢s disease. Frontiers in Cellular Neuroscience, 2015, 9, 65.	3.7	70
20	Activation of phosphatidylinositol 3-kinase β by the platelet collagen receptors integrin α2β1 and GPVI: The role of Pyk2 and c-Cbl. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1879-1888.	4.1	26
21	PI3K/Akt in platelet integrin signaling and implications in thrombosis. Advances in Biological Regulation, 2015, 59, 36-52.	2.3	138
22	Platelet CD40L Modulates Thrombus Growth Via Phosphatidylinositol 3-Kinase β, and Not Via CD40 and IκB Kinase α. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1374-1381.	2.4	31
23	Amyloid β-peptide-dependent activation of human platelets: essential role for Ca2+ and ADP in aggregation and thrombus formation. Biochemical Journal, 2014, 462, 513-523.	3.7	44
24	Role of Focal Adhesion Tyrosine Kinases in GPVI-Dependent Platelet Activation and Reactive Oxygen Species Formation. PLoS ONE, 2014, 9, e113679.	2.5	23
25	Pull-Down Assay for Analysis of Integrin-Mediated Activation of Rap Proteins in Adherent Platelets. Methods in Molecular Biology, 2014, 1120, 167-176.	0.9	0
26	Immobilized amyloid Aβ peptides support platelet adhesion and activation. FEBS Letters, 2013, 587, 2606-2611.	2.8	34
27	Phosphorylation of the guanine-nucleotide-exchange factor CalDAG-GEFI by protein kinase A regulates Ca2+-dependent activation of platelet Rap1b GTPase. Biochemical Journal, 2013, 453, 115-123.	3.7	30
28	Impaired thrombin-induced platelet activation and thrombus formation in mice lacking the Ca2+-dependent tyrosine kinase Pyk2. Blood, 2013, 121, 648-657.	1.4	38
29	The Small GTPase Rap1b: A Bidirectional Regulator of Platelet Adhesion Receptors. Journal of Signal Transduction, 2012, 2012, 1-9.	2.0	29
30	Nanoparticles induce platelet activation in vitro through stimulation of canonical signalling pathways. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1329-1336.	3.3	43
31	Role and regulation of phosphatidylinositol 3-kinase β in platelet integrin α2β1 signaling. Blood, 2012, 119, 847-856.	1.4	64
32	Alzheimer disease and platelets: how's that relevant. Immunity and Ageing, 2012, 9, 20.	4.2	103
33	Epinephrine-mediated protein kinase C and Rap1b activation requires the co-stimulation of Gz-, Gq-, and Gi-coupled receptors. Thrombosis and Haemostasis, 2011, 105, 479-486.	3.4	6
34	Thrombin induces platelet activation in the absence of functional protease activated receptors 1 and 4 and glycoprotein Ib-IX-V. Cellular Signalling, 2010, 22, 1681-1687.	3.6	21
35	Megakaryocytes of patients with MYH9-related thrombocytopenia present an altered proplatelet formation. Thrombosis and Haemostasis, 2009, 102, 90-96.	3.4	76
36	Genetic evidence for a predominant role of PI3Kβ catalytic activity in ITAM- and integrin-mediated signaling in platelets. Blood, 2009, 114, 2193-2196.	1.4	132

#	Article	IF	CITATIONS
37	Targeting of the small GTPase Rap2b, but not Rap1b, to lipid rafts is promoted by palmitoylation at Cys176 and Cys177 and is required for efficient protein activation in human platelets. Cellular Signalling, 2008, 20, 1662-1670.	3.6	22
38	The Gi-coupled P2Y12 Receptor Regulates Diacylglycerol-mediated Signaling in Human Platelets. Journal of Biological Chemistry, 2008, 283, 28795-28805.	3.4	51
39	Genetic Evidence for a Predominant Role of PI3Kβ In ITAM— and Integrin-Mediated Signaling in Platelets. Blood, 2008, 112, 410-410.	1.4	0
40	Heterozygous Ala156Val Mutation in the GPIb Alpha (Heterozygous Bernard-Soulier Syndrome Type) Tj ETQq0 0 1233-1233.	0 rgBT /O 1.4	verlock 10 Tf 0
41	Epinephrine induces intracellular Ca2+mobilization in thrombin-desensitized platelets: a role for GPIb-IX-V. Platelets, 2007, 18, 135-142.	2.3	10
42	The low-molecular-weight phosphotyrosine phosphatase is a negative regulator of FcγRIIA-mediated cell activation. Blood, 2007, 110, 1871-1878.	1.4	23
43	Membrane lipid rafts coordinate estrogen-dependent signaling in human platelets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 273-278.	4.1	27
44	Identification and biochemical characterization of Rap2C, a new member of the Rap family of small GTP-binding proteins. Biochimie, 2006, 88, 285-295.	2.6	59
45	The small GTPase Rap1b regulates the cross talk between platelet integrin α2β1 and integrin αIIbβ3. Blood, 2006, 107, 2728-2735.	1.4	72
46	The Endocannabinoid 2-Arachidonoylglycerol Regulates Platelet Function Blood, 2006, 108, 3904-3904.	1.4	0
47	Tyrosine Phosphorylation-Independent Activation of PLCγ2 Downstream Integrin α2β1 in Platelets: A Possible Role for the Small GTPase Rac Blood, 2006, 108, 1532-1532.	1.4	0
48	Nongenomic effects of 17β-estradiol in human platelets: potentiation of thrombin-induced aggregation through estrogen receptor β and Src kinase. Blood, 2005, 105, 115-121.	1.4	97
49	FbsA, a fibrinogen-binding protein from Streptococcus agalactiae, mediates platelet aggregation. Blood, 2005, 105, 1052-1059.	1.4	65
50	Thrombopoietin Complements Gi- but Not Gq-dependent Pathways for Integrin αIlbβ3 Activation and Platelet Aggregation. Journal of Biological Chemistry, 2005, 280, 24386-24395.	3.4	20
51	Pathogenetic mechanisms of hematological abnormalities of patients with MYH9 mutations. Human Molecular Genetics, 2005, 14, 3169-3178.	2.9	52
52	A New Role for FcγRIIA in the Potentiation of Human Platelet Activation Induced by Weak Stimulation Blood, 2005, 106, 1648-1648.	1.4	0
53	Regulation of Protein Kinase C by the Platelet P2Y12 ADP Receptor Blood, 2005, 106, 1647-1647.	1.4	0
54	A role for p38 MAP kinase in platelet activation by von Willebrand Factor. Thrombosis and Haemostasis, 2004, 91, 102-110.	3.4	56

#	Article	IF	CITATIONS
55	Contribution of Protease-activated Receptors 1 and 4 and Glycoprotein Ib-IX-V in the Gi-independent Activation of Platelet Rap1B by Thrombin. Journal of Biological Chemistry, 2004, 279, 25299-25306.	3.4	45
56	Signalling through the platelet glycoprotein Ib-V–IX complex. Cellular Signalling, 2004, 16, 1329-1344.	3.6	122
57	Expression, activation, and subcellular localization of the Rap1 GTPase in cord blood-derived human megakaryocytes. Experimental Cell Research, 2004, 300, 84-93.	2.6	21
58	Possible Role of Rap1B in the Cross-Talk between Integrins α2β1 and αIIbβ3 Blood, 2004, 104, 1548-1548.	1.4	0
59	Mechanisms for Thrombopoietin-Induced Potentiation of Platelet Aggregation Blood, 2004, 104, 3535-3535.	1.4	11
60	Platelet interaction with CNBr peptides from type II collagen via integrin α2β1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1640, 43-51.	4.1	9
61	A Selective Role for Phosphatidylinositol 3,4,5-Trisphosphate in the Gi-dependent Activation of Platelet Rap1B. Journal of Biological Chemistry, 2003, 278, 131-138.	3.4	92
62	A Gi-dependent Pathway Is Required for Activation of the Small GTPase Rap1B in Human Platelets. Journal of Biological Chemistry, 2002, 277, 12009-12015.	3.4	106
63	The small proteoglycan decorin supports adhesion and activation of human platelets. Blood, 2002, 100, 1707-1714.	1.4	52
64	Proline-rich Tyrosine Kinase 2 and Focal Adhesion Kinase Are Involved in Different Phases of Platelet Activation by vWF. Thrombosis and Haemostasis, 2002, 87, 509-517.	3.4	22
65	Roles of phospholipase C and phospholipase D in receptor-mediated platelet activation. , 2002, , 238-259.		1
66	The small proteoglycan decorin supports adhesion and activation of human platelets. Blood, 2002, 100, 1707-14.	1.4	19
67	Platelet Activation by von Willebrand Factor Requires Coordinated Signaling through Thromboxane A2 and Fcl ³ llA Receptor. Journal of Biological Chemistry, 2001, 276, 26022-26029.	3.4	65
68	The platelet cytoskeleton regulates the aggregation-dependent synthesis of phosphatidylinositol 3,4-bisphosphate induced by thrombin. FEBS Letters, 2000, 466, 355-358.	2.8	7
69	Rap1B and Rap2B Translocation to the Cytoskeleton by von Willebrand Factor Involves Fcl ³ II Receptor-mediated Protein Tyrosine Phosphorylation. Journal of Biological Chemistry, 1999, 274, 13690-13697.	3.4	46
70	Interaction of the low-molecular-weight GTP-binding protein rap2 with the platelet cytoskeleton is mediated by direct binding to the actin filaments. , 1999, 75, 675-685.		15
71	Hydrolysis of NADP+by platelet CD38 in the absence of synthesis and degradation of cyclic ADP-ribose 2′-phosphate. FEBS Letters, 1999, 455, 359-363.	2.8	8
72	Thrombin induces the association of cyclic ADP-ribose-synthesizing CD38 with the platelet cytoskeleton. FEBS Letters, 1998, 428, 200-204.	2.8	8

#	Article	IF	CITATIONS
73	Cytoskeleton-dependent inhibition of the ADP-ribosyl cyclase activity of CD38 in thrombin-stimulated platelets. FEBS Letters, 1998, 431, 19-22.	2.8	4
74	Agonist-induced Actin Polymerization Is Required for the Irreversibility of Platelet Aggregation. Thrombosis and Haemostasis, 1996, 76, 444-449.	3.4	23
75	Dual mechanism of protein-tyrosine phosphorylation in concanavalin A-stimulated platelets. Journal of Cellular Biochemistry, 1995, 57, 30-38.	2.6	6
76	Structure and Function of rap Proteins in Human Platelets. Thrombosis and Haemostasis, 1994, 71, 533-543.	3.4	51
77	Intracellular calcium mobilization is triggered by clustering of membrane glycoproteins in concanavalin A-stimulated platelets. Cell Biochemistry and Function, 1993, 11, 241-249.	2.9	7
78	Epinephrine induces association of pp60src with Gi $\hat{l}\pm$ in human platelets. Biochemical and Biophysical Research Communications, 1992, 186, 440-447.	2.1	30
79	Stimulation of human platelets with concanavalin a involves phospholipase C activation. Cell Biochemistry and Function, 1992, 10, 53-59.	2.9	8
80	Defect of Platelet Aggregation and Adhesion Induced by Autoantibodies Against Platelet Glycoprotein Illa. Thrombosis and Haemostasis, 1992, 68, 208-213.	3.4	24
81	Effect of GPIIb-IIIa complex ligands on calciumion movement and cytoskeleton organization in activated platelets. Biochemical and Biophysical Research Communications, 1988, 154, 258-264.	2.1	33