Doo-Young Youn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11041441/publications.pdf

Version: 2024-02-01

26 papers

1,854 citations

430874 18 h-index 26 g-index

27 all docs

27 docs citations

27 times ranked

3219 citing authors

#	Article	IF	CITATIONS
1	Violacein-embedded nanofiber filters with antiviral and antibacterial activities. Chemical Engineering Journal, 2022, 444, 136460.	12.7	19
2	Three-Dimensional, Submicron Porous Electrode with a Density Gradient to Enhance Charge Carrier Transport. ACS Nano, 2022, 16, 9762-9771.	14.6	17
3	Straightforward strategy toward a shape-deformable carbon-free cathode for flexible Li–air batteries in ambient air. Nano Energy, 2021, 83, 105821.	16.0	12
4	Stable and High-Capacity Si Electrodes with Free-Standing Architecture for Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 208-217.	5.1	9
5	Free-Standing Carbon Nanofibers Protected by a Thin Metallic Iridium Layer for Extended Life-Cycle Li–Oxygen Batteries. ACS Applied Materials & Interfaces, 2020, 12, 55756-55765.	8.0	16
6	Metal nanotrough embedded colorless polyimide films: transparent conducting electrodes with exceptional flexibility and high conductivity. Nanoscale, 2018, 10, 7927-7932.	5.6	12
7	Wireless Real-Time Temperature Monitoring of Blood Packages: Silver Nanowire-Embedded Flexible Temperature Sensors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44678-44685.	8.0	58
8	Synergistic Coupling of Metallic Cobalt Nitride Nanofibers and IrO _{<i>x</i>} Nanoparticle Catalysts for Stable Oxygen Evolution. Chemistry of Materials, 2018, 30, 5941-5950.	6.7	57
9	Mesoporous orthorhombic Nb2O5 nanofibers as pseudocapacitive electrodes with ultra-stable Li storage characteristics. Journal of Power Sources, 2017, 360, 434-442.	7.8	68
10	Formation of a Surficial Bifunctional Nanolayer on Nb ₂ O ₅ for Ultrastable Electrodes for Lithiumâ€ion Battery. Small, 2017, 13, 1603610.	10.0	74
11	Cu Microbelt Network Embedded in Colorless Polyimide Substrate: Flexible Heater Platform with High Optical Transparency and Superior Mechanical Stability. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39650-39656.	8.0	29
12	Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li-O2 Batteries. ChemSusChem, 2016, 9, 2007-2007.	6.8	2
13	Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li–O ₂ Batteries. ChemSusChem, 2016, 9, 2080-2088.	6.8	39
14	A High-Capacity and Long-Cycle-Life Lithium-Ion Battery Anode Architecture: Silver Nanoparticle-Decorated SnO ₂ /NiO Nanotubes. ACS Nano, 2016, 10, 11317-11326.	14.6	177
15	Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Materials, 2016, 8, e282-e282.	7.9	89
16	Highly flexible transparent electrodes using a silver nanowires-embedded colorless polyimide film via chemical modification. RSC Advances, 2016, 6, 30331-30336.	3.6	17
17	Synthesis of Ni-based co-catalyst functionalized W:BiVO ₄ nanofibers for solar water oxidation. Green Chemistry, 2016, 18, 944-950.	9.0	50
18	Crystalline IrO2-decorated TiO2 nanofiber scaffolds for robust and sustainable solar water oxidation. Journal of Materials Chemistry A, 2014, 2, 5610.	10.3	34

#	Article	IF	CITATIONS
19	Sensors: Thinâ€Wall Assembled SnO ₂ Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaledâ€Breathâ€Sensing Properties for the Diagnosis of Diabetes (Adv. Funct. Mater.) Tj ETo	Qq114.190.7	84 8 14 rgBT /(
20	Selective Diagnosis of Diabetes Using Pt-Functionalized WO ₃ Hemitube Networks As a Sensing Layer of Acetone in Exhaled Breath. Analytical Chemistry, 2013, 85, 1792-1796.	6.5	276
21	Thinâ€Wall Assembled SnO ₂ Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaledâ€Breathâ€Sensing Properties for the Diagnosis of Diabetes. Advanced Functional Materials, 2013, 23, 2357-2367.	14.9	328
22	Exhaled VOCs sensing properties of WO3 nanofibers functionalized by Pt and IrO2 nanoparticles for diagnosis of diabetes and halitosis. Journal of Electroceramics, 2012, 29, 106-116.	2.0	79
23	Facile Synthesis of Highly Conductive RuO2-Mn3O4 Composite Nanofibers via Electrospinning and Their Electrochemical Properties. Journal of the Electrochemical Society, 2011, 158, A970.	2.9	36
24	Facile synthesis and electrochemical properties of RuO2 nanofibers with ionically conducting hydrous layer. Journal of Materials Chemistry, 2010, 20, 9172.	6.7	57
25	Hollow ZnO Nanofibers Fabricated Using Electrospun Polymer Templates and Their Electronic Transport Properties. ACS Nano, 2009, 3, 2623-2631.	14.6	208
26	Fabrication and gas sensing properties of hollow SnO2 hemispheres. Chemical Communications, 2009, , 4019.	4.1	85