Jani Sakari Saarela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1104048/publications.pdf

Version: 2024-02-01

394421 434195 1,102 34 19 31 citations g-index h-index papers 37 37 37 1860 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Methods for High-throughput Drug Combination Screening and Synergy Scoring. Methods in Molecular Biology, 2018, 1711, 351-398.	0.9	140
2	APECED-causing mutations in AIRE reveal the functional domains of the protein. Human Mutation, 2004, 23, 245-257.	2.5	102
3	Prediction of drug combination effects with a minimal set of experiments. Nature Machine Intelligence, 2019, 1, 568-577.	16.0	99
4	Implementing a Functional Precision Medicine Tumor Board for Acute Myeloid Leukemia. Cancer Discovery, 2022, 12, 388-401.	9.4	73
5	Breeze: an integrated quality control and data analysis application for high-throughput drug screening. Bioinformatics, 2020, 36, 3602-3604.	4.1	68
6	Patient-Derived Organoids from Multiple Colorectal Cancer Liver Metastases Reveal Moderate Intra-patient Pharmacotranscriptomic Heterogeneity. Clinical Cancer Research, 2020, 26, 4107-4119.	7.0	68
7	Molecular pathogenesis of a disease: structural consequences of aspartylglucosaminuria mutations. Human Molecular Genetics, 2001, 10, 983-995.	2.9	57
8	Glycosylation, transport, and complex formation of palmitoyl protein thioesterase 1 (PPT1) $\hat{a} \in \text{``distinct}$ characteristics in neurons. BMC Cell Biology, 2007, 8, 22.	3.0	42
9	Dasatinib Reversibly Disrupts Endothelial Vascular Integrity by Increasing Non-Muscle Myosin II Contractility in a ROCK-Dependent Manner. Clinical Cancer Research, 2017, 23, 6697-6707.	7.0	41
10	Activation and Oligomerization of Aspartylglucosaminidase. Journal of Biological Chemistry, 1998, 273, 25320-25328.	3.4	40
11	Antiviral Properties of Chemical Inhibitors of Cellular Anti-Apoptotic Bcl-2 Proteins. Viruses, 2017, 9, 271.	3.3	39
12	Network pharmacology modeling identifies synergistic Aurora B and ZAK interaction in triple-negative breast cancer. Npj Systems Biology and Applications, 2019, 5, 20.	3.0	32
13	The patatin-like lipase family in Gallus gallus. BMC Genomics, 2008, 9, 281.	2.8	30
14	A novel aspartylglucosaminuria mutation affects translocation of aspartylglucosaminidase. Human Mutation, 2004, 24, 350-351.	2.5	26
15	Autoproteolytic activation of human aspartylglucosaminidase. Biochemical Journal, 2004, 378, 363-371.	3.7	25
16	BRCA1-deficient breast cancer cell lines are resistant to MEK inhibitors and show distinct sensitivities to 6-thioguanine. Scientific Reports, 2016, 6, 28217.	3.3	23
17	Systematic Mapping of Kinase Addiction Combinations in Breast Cancer Cells by Integrating Drug Sensitivity and Selectivity Profiles. Chemistry and Biology, 2015, 22, 1144-1155.	6.0	22
18	Precision Cancer Medicine in the Acoustic Dispensing Era: Ex Vivo Primary Cell Drug Sensitivity Testing. Journal of the Association for Laboratory Automation, 2016, 21, 27-36.	2.8	22

#	Article	IF	CITATIONS
19	High NRF2 Levels Correlate with Poor Prognosis in Colorectal Cancer Patients and with Sensitivity to the Kinase Inhibitor AT9283 In Vitro. Biomolecules, 2020, 10, 1365.	4.0	22
20	Therapeutic targeting of KSP in preclinical models of high-risk neuroblastoma. Science Translational Medicine, 2020, 12, .	12.4	22
21	Relevance Rank Platform (RRP) for Functional Filtering of High Content Protein–Protein Interaction Data*. Molecular and Cellular Proteomics, 2015, 14, 3274-3283.	3.8	19
22	Combined gene essentiality scoring improves the prediction of cancer dependency maps. EBioMedicine, 2019, 50, 67-80.	6.1	18
23	TP53-based interaction analysis identifies cis-eQTL variants for TP53BP2, FBXO28, and FAM53A that associate with survival and treatment outcome in breast cancer. Oncotarget, 2017, 8, 18381-18398.	1.8	14
24	Discovery of MINC1, a GTPase-Activating Protein Small Molecule Inhibitor, Targeting MgcRacGAP. Combinatorial Chemistry and High Throughput Screening, 2015, 18, 3-17.	1.1	9
25	The High Throughput Biomedicine Unit at the Institute for Molecular Medicine Finland: High Throughput Screening Meets Precision Medicine. Combinatorial Chemistry and High Throughput Screening, 2014, 17, 377-386.	1.1	9
26	High-throughput compound screening identifies navitoclax combined with irradiation as a candidate therapy for HPV-negative head and neck squamous cell carcinoma. Scientific Reports, 2021, 11, 14755.	3.3	7
27	Minimal information for chemosensitivity assays (MICHA): a next-generation pipeline to enable the FAIRification of drug screening experiments. Briefings in Bioinformatics, 2022, 23, .	6.5	7
28	Avian phospholipid transfer protein causes HDL conversion without affecting cholesterol efflux from macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 781-789.	2.4	6
29	<i>In Vitro</i> Identification and <i>In Vivo</i> Confirmation of Inhibitors for <i>Sweet Potato Chlorotic Stunt Virus</i> RNA Silencing Suppressor, a Viral RNase III. Journal of Virology, 2021, 95, .	3.4	3
30	High miR-30 Expression Associates with Improved Breast Cancer Patient Survival and Treatment Outcome. Cancers, 2021, 13, 2907.	3.7	3
31	Development of FRETâ€based highâ€throughput screening for viral RNase III inhibitors. Molecular Plant Pathology, 2020, 21, 961-974.	4.2	3
32	High Throughput siRNA Screening Using Reverse Transfection. Methods in Molecular Biology, 2016, 1470, 25-37.	0.9	1
33	Identification and Clinical Exploration of Individualized Targeted Therapeutic Approaches in Acute Myeloid Leukemia Patients By Integrating Drug Response and Deep Molecular Profiles. Blood, 2017, 130, 854-854.	1.4	1
34	Genome-wide siRNA screening reveals several host receptors for the binding of human gut commensal Bifidobacterium bifidum. Npj Biofilms and Microbiomes, 2022, 8, .	6.4	1