Yusuke Hara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1103738/publications.pdf

Version: 2024-02-01

88 papers	2,226 citations	21 h-index	233421 45 g-index
90	90	90	1873
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effects of Fiber Stiffening to a Soft Actuator with PEDOT/PSS Electrode Films on Actuation Cycling Stability. Journal of Oleo Science, 2021, 70, 861-866.	1.4	O
2	Actuation Properties of Paper Actuators Fabricated Using PEDOT/PSS Electrode Films. Journal of Oleo Science, 2020, 69, 1331-1337.	1.4	4
3	Anisotropic Self-Oscillating Reaction in Liquid Crystalline Nanosheet Hydrogels. Journal of Physical Chemistry B, 2018, 122, 2957-2961.	2.6	8
4	Air-processed semitransparent organic solar cells with tunable color. Materials Express, 2018, 8, 189-194.	0.5	4
5	Influence of thickness of alkyl-silane coupling agent coating on separation of small DNA fragments in capillary gel electrophoresis. IOP Conference Series: Materials Science and Engineering, 2017, 242, 012034.	0.6	2
6	Influence of the Belousov–Zhabotinsky substrate concentration on the lifetime and self-oscillating behavior of a polymer solution. MATEC Web of Conferences, 2017, 130, 07003.	0.2	0
7	Effect of sieving polymer concentration on separation of 100 bp DNA Ladder by capillary gel electrophoresis. IOP Conference Series: Materials Science and Engineering, 2017, 242, 012033.	0.6	O
8	Analysis of self-oscillating behaviors aimed at the development of a molecular robot with organic acids as fuel. IOP Conference Series: Materials Science and Engineering, 2017, 242, 012095.	0.6	0
9	Effect of polymer concentration on the lifetime and transmittance behavior of a self-oscillating polymer chain with a high lower critical solution temperature. MATEC Web of Conferences, 2017, 130, 07002.	0.2	O
10	Activation energy of the soluble-insoluble self-oscillation in an autonomous polymer chain. , 2017, , .		0
11	Origami Robot: A Self-Folding Paper Robot With an Electrothermal Actuator Created by Printing. IEEE/ASME Transactions on Mechatronics, 2016, 21, 2746-2754.	5.8	97
12	Synchronization of Two Self-Oscillating Gels Based on Chemo-Mechanical Coupling. Journal of Physical Chemistry B, 2016, 120, 2977-2983.	2.6	7
13	In situ cross-linked electrospun fiber scaffold of collagen for fabricating cell-dense muscle tissue. Journal of Artificial Organs, 2016, 19, 141-148.	0.9	27
14	Kirigami robot: Making paper robot using desktop cutting plotter and inkjet printer. , 2015, , .		19
15	Development of a Paper Actuator with PEDOT:PSS Thin-Films as An Electrode. Actuators, 2014, 3, 285-292.	2.3	5
16	Peristaltic motion of tubular gel driven by acid-autocatalytic reaction. Advanced Robotics, 2014, 28, 457-465.	1.8	6
17	Design of paper mechatronics: Towards a fully printed robot. , 2014, , .		12
18	Function and Autonomous Behavior of Self-Oscillating Polymer Systems. Polymers, 2014, 6, 1958-1971.	4.5	3

#	Article	IF	CITATIONS
19	Autonomous Oscillation of Polymer Chains Induced by the Belousov–Zhabotinsky Reaction. Sensors, 2014, 14, 1497-1510.	3.8	9
20	Activation Energy of Autonomous Polymer Chains with High LCST. Advanced Materials Research, 2014, 941-944, 1212-1215.	0.3	2
21	A Self-Oscillating Polymer Chain with High LCST. Advanced Materials Research, 2014, 941-944, 1208-1211.	0.3	2
22	Design and motion control of self-propelled droplets. , 2014, , .		3
23	Switching the BZ Reaction with a Strong-Acid-Free Gel. Journal of Physical Chemistry B, 2014, 118, 634-638.	2.6	11
24	Self-Oscillation of Polymer Chains with an Fe(bpy) ₃ Catalyst Induced by the Belousovâ€"Zhabotinsky Reaction. Journal of Physical Chemistry B, 2014, 118, 608-612.	2.6	15
25	Generative Force of Self-Oscillating Gel. Journal of Physical Chemistry B, 2014, 118, 2576-2581.	2.6	5
26	Adhesion of Gels by Silica Particle. Journal of Physical Chemistry B, 2014, 118, 2518-2522.	2.6	17
27	Influence of Belousov–Zhabotinsky Substrate Concentrations on Autonomous Oscillation of Polymer Chains with Fe(bpy) ₃ Catalyst. Journal of Physical Chemistry B, 2014, 118, 6931-6936.	2.6	9
28	Activation Energy of the Belousov–Zhabotinsky Reaction in a Gel with [Fe(bpy)3] Catalyst. Chemistry Letters, 2014, 43, 673-675.	1.3	6
29	Surface Modification Method for Adhesion of Gels. Chemistry Letters, 2014, 43, 243-245.	1.3	15
30	A Meniscus-climbing Gel Robot. Chemistry Letters, 2014, 43, 938-940.	1.3	13
31	Surface modification of contact lenses using adsorption of ethylene oxide branched copolymers. Journal of Applied Polymer Science, 2013, 127, 3657-3662.	2.6	4
32	Direct Observation of Periodic Swelling and Collapse of Polymer Chain Induced by the Belousov–Zhabotinsky Reaction. Journal of Physical Chemistry B, 2013, 117, 14351-14357.	2.6	12
33	A facile and high-recovery material for rare-metals based on a water-soluble polyallylamine with side-chain thiourea groups. Chemical Communications, 2013, 49, 6852.	4.1	23
34	A self-assembling method for polymer gel components. , 2013, , .		1
35	Autonomous Oscillation of Nonthermoresponsive Polymers and Gels Induced by the Belousovâ \in "Zhabotinsky Reaction. Chemosensors, 2013, 1, 3-20.	3.6	5
36	Development of autonomous actuators and application to micro fluid devices. Drug Delivery System, 2013, 28, 127-134.	0.0	0

#	Article	IF	Citations
37	Soluble-Insoluble Self-Oscillation of a Novel Nonthermoresponsive Polymer Chain Induced by the Belousov-Zhabotinsky Reaction. Advanced Materials Research, 2012, 429, 37-41.	0.3	1
38	Activation Energy of Aggregation-Disaggregation Self-Oscillation of Polymer Chain. International Journal of Molecular Sciences, 2012, 13, 16281-16290.	4.1	23
39	Capsule gel robot driven by self-propelled oil droplet. , 2012, , .		2
40	Novel Self-Oscillating Polymer Actuators for Soft Robot. , 2012, , .		0
41	Peristaltic gel pump driven by chemical energy. , 2011, , .		1
42	Tubular gel motility driven by chemical reaction networks. , 2011, , .		3
43	Self-Oscillating Behaviors of Negatively Charged Polymer Chain Induced by the Belousov-Zhabotinsky Reaction. Advanced Materials Research, 2011, 181-182, 206-211.	0.3	0
44	Design of Autonomous Gel Actuators. Polymers, 2011, 3, 299-313.	4.5	7
45	A Pendulum-Like Motion of Nanofiber Gel Actuator Synchronized with External Periodic pH Oscillation. Polymers, 2011, 3, 405-412.	4.5	33
46	Influence of Temperature and the BZ Substrate on Aggregation-Disaggregation Self-Oscillation of a Polymer Chain. Key Engineering Materials, 2011, 467-469, 1472-1477.	0.4	1
47	Influence of Initial Substrate Concentration of the Belouzov-Zhabotinsky Reaction on Transmittance Self-Oscillation for a Nonthermoresponsive Polymer Chain. Polymers, 2011, 3, 330-339.	4.5	16
48	A novel design of nanofibrous gel actuator by electrospinning. , 2010, , .		3
49	Active Polymer Gel Actuators. International Journal of Molecular Sciences, 2010, 11, 52-66.	4.1	52
50	Molecular Design and Functional Control of Novel Self-Oscillating Polymers. International Journal of Molecular Sciences, 2010, 11, 704-718.	4.1	22
51	Development of novel self-oscillating gel actuator for achievement of chemical robot. , 2009, , .		7
52	Chemical robot-design of peristaltic polymer gel actuator , 2009, , .		0
53	Development of novel self-oscillating molecular robot fueled by organic acid. , 2009, , .		1
54	Self-oscillating gel as novel biomimetic materials. Journal of Controlled Release, 2009, 140, 186-193.	9.9	64

#	Article	IF	CITATIONS
55	Influence of a Positively Charged Moiety on Aggregationâ€Disaggregation Selfâ€Oscillation Induced by the BZ Reaction. Macromolecular Chemistry and Physics, 2009, 210, 2160-2166.	2.2	15
56	Damping Behavior of the Aggregation–Disaggregation Selfâ€Oscillation of a Polymer Chain. Macromolecular Rapid Communications, 2009, 30, 1656-1662.	3.9	29
57	Control of Autonomous Swellingâ^'Deswelling Behavior for a Polymer Gel. Journal of Physical Chemistry B, 2009, 113, 4609-4613.	2.6	45
58	3SP5-04 Development of a novel autonomous chemical robot(3SP5 Development of dynamic molecular) Tj ETQc	0 0 0 rgBT 0.1	「/Overlock 1 0
59	Butsuri, 2009, 49, S21. Uniaxially aligned carbon nanofibers derived from electrospun precursor yarns. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 305-310.	2.1	14
60	Control of the Dynamic Motion of a Gel Actuator Driven by the Belousovâ€Zhabotinsky Reaction. Macromolecular Rapid Communications, 2008, 29, 401-405.	3.9	104
61	Peristaltic Motion of Polymer Gels. Angewandte Chemie - International Edition, 2008, 47, 6690-6693.	13.8	143
62	Self-Oscillating Polymer Fueled by Organic Acid. Journal of Physical Chemistry B, 2008, 112, 8427-8429.	2.6	83
63	Self-Oscillating Gel Actuator for Chemical Robotics. Advanced Robotics, 2008, 22, 1329-1342.	1.8	20
64	A viscosity self-oscillation of polymer solution induced by the Belousov–Zhabotinsky reaction under acid-free condition. Journal of Chemical Physics, 2008, 128, 224904.	3.0	66
65	Unique Shapes and Film Surfaces of Conductive Polymers Induced by Electrical Ways. Kobunshi Ronbunshu, 2008, 65, 1-5.	0.2	1
66	Design of Self-Oscillating Gel Actuators for Aiming at Chemical Robot. Kobunshi Ronbunshu, 2008, 65, 634-640.	0.2	0
67	Synthesis of High-Strength Gel Films and Their Electromechanical Properties. Kobunshi Ronbunshu, 2008, 65, 653-657.	0.2	1
68	Micrometer-scaled Channel Lengths of Organic Field-effect Transistors Patterned by Using PEDOT/PSS Microfibers. Chemistry Letters, 2008, 37, 44-45.	1.3	11
69	Chemical robot & Chemic		5
70	Plastic Shottky Barriers Fabricated by a Line Patterning Technology. Chemistry Letters, 2007, 36, 986-987.	1.3	29
71	1P305 Design of polymer gel actuator converting BZ reaction into peristaltic motion(Mathematical) Tj ETQq1 1 (2007, 47, S99.).784314 i 0.1	rgBT /Overlo
72	Selfâ€Walking Gel. Advanced Materials, 2007, 19, 3480-3484.	21.0	571

#	Article	IF	Citations
73	Characterization of a self-oscillating polymer with periodic soluble-insoluble changes. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1578-1588.	2.1	6
74	AFM Observation of Immobilized Self-Oscillating Polymer. Journal of Physical Chemistry B, 2006, 110, 5170-5173.	2.6	37
75	Aeolian dust experiment on climate impact: An overview of Japan–China joint project ADEC. Global and Planetary Change, 2006, 52, 142-172.	3.5	137
76	Microfabrication of Functional Polymer Gels and Their Application to Novel Biomimetic Materials. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2006, 19, 441-444.	0.3	15
77	Phase Transition Behaviors of Self-Oscillating Polymer and Nano-Gel Particles. Macromolecular Rapid Communications, 2005, 26, 1140-1144.	3.9	11
78	Control of Oscillating Behavior for the Self-Oscillating Polymer with pH-Control Site. Langmuir, 2005, 21, 9773-9776.	3 . 5	65
79	Self-Oscillating Solubleâ^'Insoluble Changes of a Polymer Chain Including an Oxidizing Agent Induced by the Belousovâ^'Zhabotinsky Reaction. Journal of Physical Chemistry B, 2005, 109, 23316-23319.	2.6	52
80	Self-Oscillation of Polymer Chains Induced by the Belousovâ^Zhabotinsky Reaction under Acid-Free Conditions. Journal of Physical Chemistry B, 2005, 109, 9451-9454.	2.6	75
81	On vibrational cooling upon photodissociation of carbonmonoxymyoglobin and its microscopic mechanism from the viewpoint of vibrational modes of heme. Chemical Physics Letters, 2001, 337, 151-157.	2.6	35
82	Ab initio study of ammonia adsorption states on an ice surface I: structures, adsorption energies and linear dependences on coverage ratio. Chemical Physics Letters, 2001, 348, 107-114.	2.6	12
83	Ab initio study of ammonia adsorption states on an ice surface II: theoretical characterization of the surface bound state. Chemical Physics Letters, 2001, 350, 141-146.	2.6	6
84	Chemical Robots., 0,,.		4
85	Effect of Substrate Concentrations of the BZ Reaction on Period of Self-Oscillation for Non-Thermoresponsive Polymer Chain. Key Engineering Materials, 0, 480-481, 357-362.	0.4	2
86	Trasmittance Self-Oscillating Behavior of a Non-Thermoresponsive Polymer Chain Induced by the Belouzov-Zhabotinsky (BZ) Reaction. Key Engineering Materials, 0, 480-481, 369-374.	0.4	3
87	Effect of Concentration of Nitric Acid on the Autonomous Conformation Change of a Polymer Chainwith Nonthermoresponsivenature. Advanced Materials Research, 0, 429, 42-45.	0.3	2
88	Autonomous Self-Oscillating Behavior of a Novel Nonthermoresponsive Polymer Chain. Advanced Materials Research, 0, 429, 46-49.	0.3	2