List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1103738/publications.pdf Version: 2024-02-01



VUSLIKE HADA

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Selfâ€Walking Gel. Advanced Materials, 2007, 19, 3480-3484.                                                                                                                                           | 21.0 | 571       |
| 2  | Peristaltic Motion of Polymer Gels. Angewandte Chemie - International Edition, 2008, 47, 6690-6693.                                                                                                   | 13.8 | 143       |
| 3  | Aeolian dust experiment on climate impact: An overview of Japan–China joint project ADEC. Global and<br>Planetary Change, 2006, 52, 142-172.                                                          | 3.5  | 137       |
| 4  | Control of the Dynamic Motion of a Gel Actuator Driven by the Belousovâ€Zhabotinsky Reaction.<br>Macromolecular Rapid Communications, 2008, 29, 401-405.                                              | 3.9  | 104       |
| 5  | Origami Robot: A Self-Folding Paper Robot With an Electrothermal Actuator Created by Printing.<br>IEEE/ASME Transactions on Mechatronics, 2016, 21, 2746-2754.                                        | 5.8  | 97        |
| 6  | Self-Oscillating Polymer Fueled by Organic Acid. Journal of Physical Chemistry B, 2008, 112, 8427-8429.                                                                                               | 2.6  | 83        |
| 7  | Self-Oscillation of Polymer Chains Induced by the Belousovâ^'Zhabotinsky Reaction under Acid-Free<br>Conditions. Journal of Physical Chemistry B, 2005, 109, 9451-9454.                               | 2.6  | 75        |
| 8  | A viscosity self-oscillation of polymer solution induced by the Belousov–Zhabotinsky reaction under<br>acid-free condition. Journal of Chemical Physics, 2008, 128, 224904.                           | 3.0  | 66        |
| 9  | Control of Oscillating Behavior for the Self-Oscillating Polymer with pH-Control Site. Langmuir, 2005, 21, 9773-9776.                                                                                 | 3.5  | 65        |
| 10 | Self-oscillating gel as novel biomimetic materials. Journal of Controlled Release, 2009, 140, 186-193.                                                                                                | 9.9  | 64        |
| 11 | Self-Oscillating Solubleâ~'Insoluble Changes of a Polymer Chain Including an Oxidizing Agent Induced by the Belousovâ~'Zhabotinsky Reaction. Journal of Physical Chemistry B, 2005, 109, 23316-23319. | 2.6  | 52        |
| 12 | Active Polymer Gel Actuators. International Journal of Molecular Sciences, 2010, 11, 52-66.                                                                                                           | 4.1  | 52        |
| 13 | Control of Autonomous Swellingâ^'Deswelling Behavior for a Polymer Gel. Journal of Physical<br>Chemistry B, 2009, 113, 4609-4613.                                                                     | 2.6  | 45        |
| 14 | AFM Observation of Immobilized Self-Oscillating Polymer. Journal of Physical Chemistry B, 2006, 110, 5170-5173.                                                                                       | 2.6  | 37        |
| 15 | On vibrational cooling upon photodissociation of carbonmonoxymyoglobin and its microscopic mechanism from the viewpoint of vibrational modes of heme. Chemical Physics Letters, 2001, 337, 151-157.   | 2.6  | 35        |
| 16 | A Pendulum-Like Motion of Nanofiber Gel Actuator Synchronized with External Periodic pH<br>Oscillation. Polymers, 2011, 3, 405-412.                                                                   | 4.5  | 33        |
| 17 | Plastic Shottky Barriers Fabricated by a Line Patterning Technology. Chemistry Letters, 2007, 36,<br>986-987.                                                                                         | 1.3  | 29        |
| 18 | Damping Behavior of the Aggregation–Disaggregation Selfâ€Oscillation of a Polymer Chain.<br>Macromolecular Rapid Communications, 2009, 30, 1656-1662.                                                 | 3.9  | 29        |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | In situ cross-linked electrospun fiber scaffold of collagen for fabricating cell-dense muscle tissue.<br>Journal of Artificial Organs, 2016, 19, 141-148.                                          | 0.9 | 27        |
| 20 | Activation Energy of Aggregation-Disaggregation Self-Oscillation of Polymer Chain. International<br>Journal of Molecular Sciences, 2012, 13, 16281-16290.                                          | 4.1 | 23        |
| 21 | A facile and high-recovery material for rare-metals based on a water-soluble polyallylamine with side-chain thiourea groups. Chemical Communications, 2013, 49, 6852.                              | 4.1 | 23        |
| 22 | Molecular Design and Functional Control of Novel Self-Oscillating Polymers. International Journal of Molecular Sciences, 2010, 11, 704-718.                                                        | 4.1 | 22        |
| 23 | Self-Oscillating Gel Actuator for Chemical Robotics. Advanced Robotics, 2008, 22, 1329-1342.                                                                                                       | 1.8 | 20        |
| 24 | Kirigami robot: Making paper robot using desktop cutting plotter and inkjet printer. , 2015, , .                                                                                                   |     | 19        |
| 25 | Adhesion of Gels by Silica Particle. Journal of Physical Chemistry B, 2014, 118, 2518-2522.                                                                                                        | 2.6 | 17        |
| 26 | Influence of Initial Substrate Concentration of the Belouzov-Zhabotinsky Reaction on Transmittance<br>Self-Oscillation for a Nonthermoresponsive Polymer Chain. Polymers, 2011, 3, 330-339.        | 4.5 | 16        |
| 27 | Microfabrication of Functional Polymer Gels and Their Application to Novel Biomimetic Materials.<br>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2006, 19, 441-444. | 0.3 | 15        |
| 28 | Influence of a Positively Charged Moiety on Aggregationâ€Disaggregation Selfâ€Oscillation Induced by the BZ Reaction. Macromolecular Chemistry and Physics, 2009, 210, 2160-2166.                  | 2.2 | 15        |
| 29 | Self-Oscillation of Polymer Chains with an Fe(bpy) <sub>3</sub> Catalyst Induced by the<br>Belousov–Zhabotinsky Reaction. Journal of Physical Chemistry B, 2014, 118, 608-612.                     | 2.6 | 15        |
| 30 | Surface Modification Method for Adhesion of Gels. Chemistry Letters, 2014, 43, 243-245.                                                                                                            | 1.3 | 15        |
| 31 | Uniaxially aligned carbon nanofibers derived from electrospun precursor yarns. Journal of Polymer<br>Science, Part B: Polymer Physics, 2008, 46, 305-310.                                          | 2.1 | 14        |
| 32 | A Meniscus-climbing Gel Robot. Chemistry Letters, 2014, 43, 938-940.                                                                                                                               | 1.3 | 13        |
| 33 | Ab initio study of ammonia adsorption states on an ice surface I: structures, adsorption energies and<br>linear dependences on coverage ratio. Chemical Physics Letters, 2001, 348, 107-114.       | 2.6 | 12        |
| 34 | Direct Observation of Periodic Swelling and Collapse of Polymer Chain Induced by the<br>Belousov–Zhabotinsky Reaction. Journal of Physical Chemistry B, 2013, 117, 14351-14357.                    | 2.6 | 12        |
| 35 | Design of paper mechatronics: Towards a fully printed robot. , 2014, , .                                                                                                                           |     | 12        |
| 36 | Phase Transition Behaviors of Self-Oscillating Polymer and Nano-Gel Particles. Macromolecular Rapid Communications, 2005, 26, 1140-1144.                                                           | 3.9 | 11        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Micrometer-scaled Channel Lengths of Organic Field-effect Transistors Patterned by Using PEDOT/PSS<br>Microfibers. Chemistry Letters, 2008, 37, 44-45.                                               | 1.3 | 11        |
| 38 | Switching the BZ Reaction with a Strong-Acid-Free Gel. Journal of Physical Chemistry B, 2014, 118, 634-638.                                                                                          | 2.6 | 11        |
| 39 | Autonomous Oscillation of Polymer Chains Induced by the Belousov–Zhabotinsky Reaction. Sensors, 2014, 14, 1497-1510.                                                                                 | 3.8 | 9         |
| 40 | Influence of Belousov–Zhabotinsky Substrate Concentrations on Autonomous Oscillation of<br>Polymer Chains with Fe(bpy) <sub>3</sub> Catalyst. Journal of Physical Chemistry B, 2014, 118, 6931-6936. | 2.6 | 9         |
| 41 | Anisotropic Self-Oscillating Reaction in Liquid Crystalline Nanosheet Hydrogels. Journal of Physical<br>Chemistry B, 2018, 122, 2957-2961.                                                           | 2.6 | 8         |
| 42 | Development of novel self-oscillating gel actuator for achievement of chemical robot. , 2009, , .                                                                                                    |     | 7         |
| 43 | Design of Autonomous Gel Actuators. Polymers, 2011, 3, 299-313.                                                                                                                                      | 4.5 | 7         |
| 44 | Synchronization of Two Self-Oscillating Gels Based on Chemo-Mechanical Coupling. Journal of Physical Chemistry B, 2016, 120, 2977-2983.                                                              | 2.6 | 7         |
| 45 | Ab initio study of ammonia adsorption states on an ice surface II: theoretical characterization of the surface bound state. Chemical Physics Letters, 2001, 350, 141-146.                            | 2.6 | 6         |
| 46 | Characterization of a self-oscillating polymer with periodic soluble-insoluble changes. Journal of<br>Polymer Science, Part B: Polymer Physics, 2007, 45, 1578-1588.                                 | 2.1 | 6         |
| 47 | Peristaltic motion of tubular gel driven by acid-autocatalytic reaction. Advanced Robotics, 2014, 28, 457-465.                                                                                       | 1.8 | 6         |
| 48 | Activation Energy of the Belousov–Zhabotinsky Reaction in a Gel with [Fe(bpy)3] Catalyst. Chemistry<br>Letters, 2014, 43, 673-675.                                                                   | 1.3 | 6         |
| 49 | Chemical robot —Design of self-walking gel—. , 2007, , .                                                                                                                                             |     | 5         |
| 50 | Autonomous Oscillation of Nonthermoresponsive Polymers and Gels Induced by the Belousov–Zhabotinsky Reaction. Chemosensors, 2013, 1, 3-20.                                                           | 3.6 | 5         |
| 51 | Development of a Paper Actuator with PEDOT:PSS Thin-Films as An Electrode. Actuators, 2014, 3, 285-292.                                                                                              | 2.3 | 5         |
| 52 | Generative Force of Self-Oscillating Gel. Journal of Physical Chemistry B, 2014, 118, 2576-2581.                                                                                                     | 2.6 | 5         |
| 53 | Chemical Robots. , 0, , .                                                                                                                                                                            |     | 4         |
| 54 | Surface modification of contact lenses using adsorption of ethylene oxide branched copolymers.<br>Journal of Applied Polymer Science, 2013, 127, 3657-3662.                                          | 2.6 | 4         |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Air-processed semitransparent organic solar cells with tunable color. Materials Express, 2018, 8, 189-194.                                                                                                              | 0.5 | 4         |
| 56 | Actuation Properties of Paper Actuators Fabricated Using PEDOT/PSS Electrode Films. Journal of Oleo Science, 2020, 69, 1331-1337.                                                                                       | 1.4 | 4         |
| 57 | A novel design of nanofibrous gel actuator by electrospinning. , 2010, , .                                                                                                                                              |     | 3         |
| 58 | Tubular gel motility driven by chemical reaction networks. , 2011, , .                                                                                                                                                  |     | 3         |
| 59 | Trasmittance Self-Oscillating Behavior of a Non-Thermoresponsive Polymer Chain Induced by the<br>Belouzov-Zhabotinsky (BZ) Reaction. Key Engineering Materials, 0, 480-481, 369-374.                                    | 0.4 | 3         |
| 60 | Function and Autonomous Behavior of Self-Oscillating Polymer Systems. Polymers, 2014, 6, 1958-1971.                                                                                                                     | 4.5 | 3         |
| 61 | Design and motion control of self-propelled droplets. , 2014, , .                                                                                                                                                       |     | 3         |
| 62 | Effect of Substrate Concentrations of the BZ Reaction on Period of Self-Oscillation for Non-Thermoresponsive Polymer Chain. Key Engineering Materials, 0, 480-481, 357-362.                                             | 0.4 | 2         |
| 63 | Effect of Concentration of Nitric Acid on the Autonomous Conformation Change of a Polymer Chainwith Nonthermoresponsivenature. Advanced Materials Research, 0, 429, 42-45.                                              | 0.3 | 2         |
| 64 | Capsule gel robot driven by self-propelled oil droplet. , 2012, , .                                                                                                                                                     |     | 2         |
| 65 | Autonomous Self-Oscillating Behavior of a Novel Nonthermoresponsive Polymer Chain. Advanced<br>Materials Research, 0, 429, 46-49.                                                                                       | 0.3 | 2         |
| 66 | Activation Energy of Autonomous Polymer Chains with High LCST. Advanced Materials Research, 2014, 941-944, 1212-1215.                                                                                                   | 0.3 | 2         |
| 67 | A Self-Oscillating Polymer Chain with High LCST. Advanced Materials Research, 2014, 941-944, 1208-1211.                                                                                                                 | 0.3 | 2         |
| 68 | Influence of thickness of alkyl-silane coupling agent coating on separation of small DNA fragments in<br>capillary gel electrophoresis. IOP Conference Series: Materials Science and Engineering, 2017, 242,<br>012034. | 0.6 | 2         |
| 69 | Unique Shapes and Film Surfaces of Conductive Polymers Induced by Electrical Ways. Kobunshi<br>Ronbunshu, 2008, 65, 1-5.                                                                                                | 0.2 | 1         |
| 70 | Synthesis of High-Strength Gel Films and Their Electromechanical Properties. Kobunshi Ronbunshu,<br>2008, 65, 653-657.                                                                                                  | 0.2 | 1         |
| 71 | Development of novel self-oscillating molecular robot fueled by organic acid. , 2009, , .                                                                                                                               |     | 1         |
|    |                                                                                                                                                                                                                         |     |           |

72 Peristaltic gel pump driven by chemical energy. , 2011, , .

YUSUKE HARA

| #  | Article                                                                                                                                                                                                           | IF                | CITATIONS           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 73 | Influence of Temperature and the BZ Substrate on Aggregation-Disaggregation Self-Oscillation of a Polymer Chain. Key Engineering Materials, 2011, 467-469, 1472-1477.                                             | 0.4               | 1                   |
| 74 | Soluble-Insoluble Self-Oscillation of a Novel Nonthermoresponsive Polymer Chain Induced by the Belousov-Zhabotinsky Reaction. Advanced Materials Research, 2012, 429, 37-41.                                      | 0.3               | 1                   |
| 75 | A self-assembling method for polymer gel components. , 2013, , .                                                                                                                                                  |                   | 1                   |
| 76 | 1P305 Design of polymer gel actuator converting BZ reaction into peristaltic motion(Mathematical) Tj ETQq0 0 0<br>2007, 47, S99.                                                                                  | rgBT /Ove<br>0.1  | erlock 10 Tf 5<br>0 |
| 77 | Design of Self-Oscillating Gel Actuators for Aiming at Chemical Robot. Kobunshi Ronbunshu, 2008, 65,<br>634-640.                                                                                                  | 0.2               | 0                   |
| 78 | Chemical robot-design of peristaltic polymer gel actuator , 2009, , .                                                                                                                                             |                   | 0                   |
| 79 | 3SP5-04 Development of a novel autonomous chemical robot(3SP5 Development of dynamic molecular) Tj ETQq2                                                                                                          | l 1 0.7843<br>0.1 | 314 rgBT /○∖<br>0   |
| 80 | Self-Oscillating Behaviors of Negatively Charged Polymer Chain Induced by the Belousov-Zhabotinsky Reaction. Advanced Materials Research, 2011, 181-182, 206-211.                                                 | 0.3               | 0                   |
| 81 | Novel Self-Oscillating Polymer Actuators for Soft Robot. , 2012, , .                                                                                                                                              |                   | 0                   |
| 82 | Development of autonomous actuators and application to micro fluid devices. Drug Delivery System, 2013, 28, 127-134.                                                                                              | 0.0               | 0                   |
| 83 | Influence of the Belousov–Zhabotinsky substrate concentration on the lifetime and self-oscillating behavior of a polymer solution. MATEC Web of Conferences, 2017, 130, 07003.                                    | 0.2               | 0                   |
| 84 | Effect of sieving polymer concentration on separation of 100 bp DNA Ladder by capillary gel electrophoresis. IOP Conference Series: Materials Science and Engineering, 2017, 242, 012033.                         | 0.6               | 0                   |
| 85 | Analysis of self-oscillating behaviors aimed at the development of a molecular robot with organic acids as fuel. IOP Conference Series: Materials Science and Engineering, 2017, 242, 012095.                     | 0.6               | 0                   |
| 86 | Effect of polymer concentration on the lifetime and transmittance behavior of a self-oscillating<br>polymer chain with a high lower critical solution temperature. MATEC Web of Conferences, 2017, 130,<br>07002. | 0.2               | 0                   |
| 87 | Effects of Fiber Stiffening to a Soft Actuator with PEDOT/PSS Electrode Films on Actuation Cycling Stability. Journal of Oleo Science, 2021, 70, 861-866.                                                         | 1.4               | 0                   |
| 88 | Activation energy of the soluble-insoluble self-oscillation in an autonomous polymer chain. , 2017, , .                                                                                                           |                   | 0                   |