
Gero Steinberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1103399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conditional promoters to investigate gene function during wheat infection by Zymoseptoria tritici. Fungal Genetics and Biology, 2021, 146, 103487.	2.1	1
2	Asynchronous development of Zymoseptoria tritici infection in wheat. Fungal Genetics and Biology, 2021, 146, 103504.	2.1	22
3	Modelling the motion of organelles in an elongated cell via the coordination of heterogeneous drift–diffusion and long-range transport. European Physical Journal E, 2021, 44, 10.	1.6	1
4	Class V chitin synthase and β(1,3)-glucan synthase co-travel in the same vesicle in Zymoseptoria tritici. Fungal Genetics and Biology, 2020, 135, 103286.	2.1	4
5	Optimal timing for Agrobacterium-mediated DNA transformation of Trichoderma reesei conidia revealed by live cell imaging. Fungal Genetics and Biology, 2020, 142, 103448.	2.1	2
6	Fungi, fungicide discovery and global food security. Fungal Genetics and Biology, 2020, 144, 103476.	2.1	48
7	The fungicide dodine primarily inhibits mitochondrial respiration in Ustilago maydis, but also affects plasma membrane integrity and endocytosis, which is not found in Zymoseptoria tritici. Fungal Genetics and Biology, 2020, 142, 103414.	2.1	11
8	Threats to global food security from emerging fungal and oomycete crop pathogens. Nature Food, 2020, 1, 332-342.	14.0	234
9	Optimised red- and green-fluorescent proteins for live cell imaging in the industrial enzyme-producing fungus Trichoderma reesei. Fungal Genetics and Biology, 2020, 138, 103366.	2.1	3
10	A lipophilic cation protects crops against fungal pathogens by multiple modes of action. Nature Communications, 2020, 11, 1608.	12.8	31
11	Cell Biology of Hyphal Growth. Microbiology Spectrum, 2017, 5, .	3.0	98
12	The Role of the Fungal Cell Wall in the Infection of Plants. Trends in Microbiology, 2017, 25, 957-967.	7.7	146
13	Fluorescent markers of various organelles in the wheat pathogen Zymoseptoria tritici. Fungal Genetics and Biology, 2017, 105, 16-27.	2.1	25
14	Spatial organization of organelles in fungi: Insights from mathematical modelling. Fungal Genetics and Biology, 2017, 103, 55-59.	2.1	5
15	ATP prevents Woronin bodies from sealing septal pores in unwounded cells of the fungus <i>Zymoseptoria tritici</i> . Cellular Microbiology, 2017, 19, e12764.	2.1	10
16	Woronin body-based sealing of septal pores. Fungal Genetics and Biology, 2017, 109, 53-55.	2.1	27
17	Editorial overview: Parasitic and fungal diseases. Current Opinion in Microbiology, 2016, 34, v-vi.	5.1	0
18	Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells. Nature Communications, 2016, 7, 11814.	12.8	69

GERO STEINBERG

#	Article	IF	CITATIONS
19	The mechanism of peroxisome motility in filamentous fungi. Fungal Genetics and Biology, 2016, 97, 33-35.	2.1	9
20	Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation. Nature Microbiology, 2016, 1, 16149.	13.3	56
21	Early endosomes motility in filamentous fungi: How and why they move. Fungal Biology Reviews, 2015, 29, 1-6.	4.7	12
22	Peroxisomes, lipid droplets, and endoplasmic reticulum "hitchhike―on motile early endosomes. Journal of Cell Biology, 2015, 211, 945-954.	5.2	129
23	Kinesin-3 in the basidiomycete Ustilago maydis transports organelles along the entire microtubule array. Fungal Genetics and Biology, 2015, 74, 59-61.	2.1	6
24	Libraries for two-hybrid screening of yeast and hyphal growth forms in Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 94-101.	2.1	5
25	Fluorescent markers of the microtubule cytoskeleton in Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 141-149.	2.1	18
26	Red fluorescent proteins for imaging Zymoseptoria tritici during invasion of wheat. Fungal Genetics and Biology, 2015, 79, 132-140.	2.1	27
27	Measurement of virulence in Zymoseptoria tritici through low inoculum-density assays. Fungal Genetics and Biology, 2015, 79, 89-93.	2.1	22
28	Cell biology of Zymoseptoria tritici : Pathogen cell organization and wheat infection. Fungal Genetics and Biology, 2015, 79, 17-23.	2.1	98
29	Fluorescent markers for the Spitzenkörper and exocytosis in Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 158-165.	2.1	18
30	A gene locus for targeted ectopic gene integration in Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 118-124.	2.1	35
31	Conditional promoters for analysis of essential genes in Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 166-173.	2.1	10
32	Fluorescent markers of the endocytic pathway in Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 150-157.	2.1	22
33	A codon-optimized green fluorescent protein for live cell imaging in Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 125-131.	2.1	37
34	New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 111-125.	4.1	49
35	Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes. Journal of Cell Biology, 2014, 204, 989-1007.	5.2	135
36	Early endosome motility spatially organizes polysome distribution. Journal of Cell Biology, 2014, 204, 343-357.	5.2	116

GERO STEINBERG

#	Article	IF	CITATIONS
37	Molecular characterization and functional analyses of <i><scp>ZtWor1</scp></i> , a transcriptional regulator of the fungal wheat pathogen <i><scp>Z</scp>ymoseptoria tritici</i> . Molecular Plant Pathology, 2014, 15, 394-405.	4.2	60
38	Long-distance endosome trafficking drives fungal effector production during plant infection. Nature Communications, 2014, 5, 5097.	12.8	86
39	Endocytosis and early endosome motility in filamentous fungi. Current Opinion in Microbiology, 2014, 20, 10-18.	5.1	88
40	Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase. EMBO Journal, 2012, 31, 214-227.	7.8	97
41	Motor-driven motility of fungal nuclear pores organizes chromosomes and fosters nucleocytoplasmic transport. Journal of Cell Biology, 2012, 198, 343-355.	5.2	33
42	The transport machinery for motility of fungal endosomes. Fungal Genetics and Biology, 2012, 49, 675-676.	2.1	14
43	Septin-Mediated Plant Cell Invasion by the Rice Blast Fungus, <i>Magnaporthe oryzae</i> . Science, 2012, 336, 1590-1595.	12.6	311
44	Cytoplasmic Fungal Lipases Release Fungicides from Ultra-Deformable Vesicular Drug Carriers. PLoS ONE, 2012, 7, e38181.	2.5	8
45	Motors in fungal morphogenesis: cooperation versus competition. Current Opinion in Microbiology, 2011, 14, 660-667.	5.1	52
46	Controlled and stochastic retention concentrates dynein at microtubule ends to keep endosomes on track. EMBO Journal, 2011, 30, 652-664.	7.8	78
47	The dynamic fungal cell. Fungal Biology Reviews, 2011, 25, 14-37.	4.7	23
48	Transient binding of dynein controls bidirectional long-range motility of early endosomes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3618-3623.	7.1	139
49	Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array. Molecular Biology of the Cell, 2011, 22, 3645-3657.	2.1	78
50	The Myosin Motor Domain of Fungal Chitin Synthase V Is Dispensable for Vesicle Motility but Required for Virulence of the Maize Pathogen Ustilago maydis Â. Plant Cell, 2010, 22, 2476-2494.	6.6	78
51	Queueing induced by bidirectional motor motion near the end of a microtubule. Physical Review E, 2010, 82, 051907.	2.1	27
52	Ustilago maydis, a new fungal model system for cell biology. Trends in Cell Biology, 2008, 18, 61-67.	7.9	113
53	Dynamic Rearrangement of Nucleoporins during Fungal "Open―Mitosis. Molecular Biology of the Cell, 2008, 19, 1230-1240.	2.1	43
54	Sustained cell polarity and virulence in the phytopathogenic fungus Ustilago maydis depends on an essential cyclin-dependent kinase from the Cdk5/Pho85 family. Journal of Cell Science, 2007, 120, 1584-1595.	2.0	79

GERO STEINBERG

#	Article	IF	CITATIONS
55	Hyphal Growth: a Tale of Motors, Lipids, and the SpitzenkoÌrper. Eukaryotic Cell, 2007, 6, 351-360.	3.4	257
56	A Chitin Synthase with a Myosin-Like Motor Domain Is Essential for Hyphal Growth, Appressorium Differentiation, and Pathogenicity of the Maize Anthracnose Fungus <i>Colletotrichum graminicola</i> . Molecular Plant-Microbe Interactions, 2007, 20, 1555-1567.	2.6	111
57	On the move: endosomes in fungal growth and pathogenicity. Nature Reviews Microbiology, 2007, 5, 309-316.	28.6	95
58	The fungus Ustilago maydis and humans share disease-related proteins that are not found in Saccharomyces cerevisiae. BMC Genomics, 2007, 8, 473.	2.8	15
59	Dynein-mediated pulling forces drive rapid mitotic spindle elongation in Ustilago maydis. EMBO Journal, 2006, 25, 4897-4908.	7.8	58
60	Dynein-dependent Motility of Microtubules and Nucleation Sites Supports Polarization of the Tubulin Array in the Fungus Ustilago maydis. Molecular Biology of the Cell, 2006, 17, 3242-3253.	2.1	42
61	Endocytosis Is Essential for Pathogenic Development in the Corn Smut Fungus Ustilago maydis. Plant Cell, 2006, 18, 2066-2081.	6.6	128
62	Conventional Kinesin Mediates Microtubule-Microtubule Interactions In Vivo. Molecular Biology of the Cell, 2006, 17, 907-916.	2.1	69
63	A novel mechanism of nuclear envelope break-down in a fungus: nuclear migration strips off the envelope. EMBO Journal, 2005, 24, 1674-1685.	7.8	87
64	Microtubules Are Dispensable for the Initial Pathogenic Development but Required for Long-Distance Hyphal Growth in the Corn Smut FungusUstilago maydis. Molecular Biology of the Cell, 2005, 16, 2746-2758.	2.1	82
65	Myosin-V, Kinesin-1, and Kinesin-3 Cooperate in Hyphal Growth of the FungusUstilago maydis. Molecular Biology of the Cell, 2005, 16, 5191-5201.	2.1	108
66	Polar Localizing Class V Myosin Chitin Synthases Are Essential during Early Plant Infection in the Plant Pathogenic Fungus Ustilago maydis. Plant Cell, 2005, 18, 225-242.	6.6	121
67	Calcium Signaling Is Involved in Dynein-dependent Microtubule Organization. Molecular Biology of the Cell, 2004, 15, 1969-1980.	2.1	56
68	Microtubule Organization Requires Cell Cycle-dependent Nucleation at Dispersed Cytoplasmic Sites: Polar and Perinuclear Microtubule Organizing Centers in the Plant PathogenUstilago maydis. Molecular Biology of the Cell, 2003, 14, 642-657.	2.1	102
69	Pheromone-Induced G 2 Arrest in the Phytopathogenic Fungus Ustilago maydis. Eukaryotic Cell, 2003, 2, 494-500.	3.4	104
70	A Class-V Myosin Required for Mating, Hyphal Growth, and Pathogenicity in the Dimorphic Plant Pathogen Ustilago maydis Â[W]. Plant Cell, 2003, 15, 2826-2842.	6.6	79
71	Dynein Supports Motility of Endoplasmic Reticulum in the FungusUstilago maydis. Molecular Biology of the Cell, 2002, 13, 965-977.	2.1	101
72	A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis. EMBO Journal, 2002, 21, 2946-2957.	7.8	150

#	Article	IF	CITATIONS
73	A split motor domain in a cytoplasmic dynein. EMBO Journal, 2001, 20, 5091-5100.	7.8	89
74	Mechanisms of Hyphal Tip Growth: Tube Dwelling Amebae Revisited. Fungal Genetics and Biology, 1999, 28, 79-93.	2.1	60
75	Cell Biology of Hyphal Growth. , 0, , 231-265.		15