Dane Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1102886/publications.pdf

Version: 2024-02-01

186265 144013 3,458 63 28 57 h-index citations g-index papers 67 67 67 5326 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Capsule of <i>Acinetobacter baumannii</i> Protects against the Innate Immune Response. Journal of Innate Immunity, 2022, 14, 543-554.	3.8	10
2	Characterization of the Anti-Inflammatory Capacity of IL-10-Producing Neutrophils in Response to Streptococcus pneumoniae Infection. Frontiers in Immunology, 2021, 12, 638917.	4.8	19
3	Growth and Stress Tolerance Comprise Independent Metabolic Strategies Critical for Staphylococcus aureus Infection. MBio, 2021, 12, e0081421.	4.1	11
4	Impact of Type I Interferons on Susceptibility to Bacterial Pathogens. Trends in Microbiology, 2021, 29, 823-835.	7.7	25
5	<i>Pseudomonas aeruginosa</i> Can Degrade Interferon <i>λ</i> , Thereby Repressing the Antiviral Response of Bronchial Epithelial Cells. Journal of Interferon and Cytokine Research, 2020, 40, 429-431.	1.2	3
6	Staphylococcal DNA Repair Is Required for Infection. MBio, 2020, 11, .	4.1	18
7	Trained immunity and hostâ€pathogen interactions. Cellular Microbiology, 2020, 22, e13261.	2.1	15
8	Differential Induction of Type I and III Interferons by Staphylococcus aureus. Infection and Immunity, 2020, 88, .	2.2	13
9	The ClpXP Protease Contributes to Staphylococcus aureus Pneumonia. Journal of Infectious Diseases, 2020, 222, 1400-1404.	4.0	12
10	Biological sex influences susceptibility to Acinetobacter baumannii pneumonia in mice. JCI Insight, 2020, 5, .	5.0	14
11	Innate Immune Responses to <i>Acinetobacter baumannii</i> in the Airway. Journal of Interferon and Cytokine Research, 2019, 39, 441-449.	1.2	14
12	Dual Gene Expression Analysis Identifies Factors Associated with Staphylococcus aureus Virulence in Diabetic Mice. Infection and Immunity, 2019, 87, .	2.2	22
13	Type III IFNs: Beyond antiviral protection. Seminars in Immunology, 2019, 43, 101303.	5.6	66
14	Revisiting Bacterial Interference in the Age of Methicillin-resistant Staphylococcus aureus. Pediatric Infectious Disease Journal, 2019, 38, 958-966.	2.0	7
15	Inducible Costimulator Contributes to Methicillin-Resistant Staphylococcus aureus Pneumonia. Journal of Infectious Diseases, 2018, 218, 659-668.	4.0	4
16	A live vaccine to Staphylococcus aureus infection. Virulence, 2018, 9, 700-702.	4.4	13
17	ILâ€1β activation in response to <i>Staphylococcus aureus</i> lung infection requires inflammasomeâ€dependent and independent mechanisms. European Journal of Immunology, 2018, 48, 1707-1716.	2.9	35
18	CD80/CD86 signaling contributes to the proinflammatory response of Staphylococcus aureus in the airway. Cytokine, 2018, 107, 130-136.	3.2	30

#	Article	IF	CITATIONS
19	Disruption of staphylococcal aggregation protects against lethal lung injury. Journal of Clinical Investigation, 2018, 128, 1074-1086.	8.2	39
20	Metabolic Stress Drives Keratinocyte Defenses against Staphylococcus aureus Infection. Cell Reports, 2017, 18, 2742-2751.	6.4	70
21	Impact of Type I and III Interferons on Respiratory Superinfections Due to Multidrug-Resistant Pathogens. Journal of Infectious Diseases, 2017, 215, S58-S63.	4.0	12
22	Humanized Mouse Models of Staphylococcus aureus Infection. Frontiers in Immunology, 2017, 8, 512.	4.8	32
23	Acquired resistance to innate immune clearance promotes Klebsiella pneumoniae ST258 pulmonary infection. JCI Insight, 2016, 1, e89704.	5.0	52
24	A new approach to toxin neutralization in <i> <scp>S</scp> taphylococcus aureus </i> therapy. EMBO Reports, 2016, 17, 284-285.	4.5	2
25	Necroptosis Promotes Staphylococcus aureus Clearance by Inhibiting Excessive Inflammatory Signaling. Cell Reports, 2016, 16, 2219-2230.	6.4	139
26	Immunoregulatory effects of necroptosis in bacterial infections. Cytokine, 2016, 88, 274-275.	3.2	8
27	Humanized Mice Exhibit Increased Susceptibility toStaphylococcus aureusPneumonia. Journal of Infectious Diseases, 2016, 215, jiw425.	4.0	56
28	Microbial pathogenesis and type III interferons. Cytokine and Growth Factor Reviews, 2016, 29, 45-51.	7.2	17
29	Lambda Interferon Restructures the Nasal Microbiome and Increases Susceptibility to Staphylococcus aureus Superinfection. MBio, 2016, 7, e01939-15.	4.1	94
30	Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiological Reviews, 2016, 96, 19-53.	28.8	42
31	A two-component regulatory system modulates twitching motility in Dichelobacter nodosus. Veterinary Microbiology, 2015, 179, 34-41.	1.9	11
32	Toxin-Induced Necroptosis Is a Major Mechanism of Staphylococcus aureus Lung Damage. PLoS Pathogens, 2015, 11, e1004820.	4.7	212
33	Methicillin-Resistant Staphylococcus aureus Adaptation to Human Keratinocytes. MBio, 2015, 6, .	4.1	95
34	CD4+ T Cells Promote the Pathogenesis of Staphylococcus aureus Pneumonia. Journal of Infectious Diseases, 2015, 211, 835-845.	4.0	50
35	Pseudomonas aeruginosa Host Immune Evasion. , 2015, , 3-23.		5
36	Rational Manipulation of mRNA Folding Free Energy Allows Rheostat Control of Pneumolysin Production by Streptococcus pneumoniae. PLoS ONE, 2015, 10, e0119823.	2.5	9

#	Article	IF	CITATIONS
37	Induction of Type I Interferon Signaling Determines the Relative Pathogenicity of Staphylococcus aureus Strains. PLoS Pathogens, 2014, 10, e1003951.	4.7	84
38	Genome Sequence of Bacterial Interference Strain Staphylococcus aureus 502A. Genome Announcements, 2014, 2, .	0.8	22
39	Secretion of IL-16 through TNFR1 and calpain-caspase signaling contributes to MRSA pneumonia. Mucosal Immunology, 2014, 7, 1366-1374.	6.0	19
40	Activation of Type I IFN Signaling by Staphylococcus aureus., 2014,, 61-69.		0
41	Epithelial Uptake of Flagella Initiates Proinflammatory Signaling. PLoS ONE, 2013, 8, e59932.	2.5	21
42	Type I Interferon Responses to Airway Pathogens. , 2013, , 139-158.		0
43	Macrophage destruction and loss of immunoregulatory function contributes to the pathology associated with MRSA pneumonia. FASEB Journal, 2013, 27, 831.12.	0.5	0
44	Staphylococcus aureus Activation of Caspase 1/Calpain Signaling Mediates Invasion Through Human Keratinocytes. Journal of Infectious Diseases, 2012, 205, 1571-1579.	4.0	70
45	<i>Staphylococcus aureus</i> Induces Type I IFN Signaling in Dendritic Cells Via TLR9. Journal of Immunology, 2012, 189, 4040-4046.	0.8	114
46	Protection from the acquisition of <i>Staphylococcus aureus</i> nasal carriage by cross-reactive antibody to a pneumococcal dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13823-13828.	7.1	39
47	Induction of Type I Interferon Signaling by <i>Pseudomonas aeruginosa</i> Is Diminished in Cystic Fibrosis Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 6-13.	2.9	60
48	Immunopathogenesis of Staphylococcus aureus pulmonary infection. Seminars in Immunopathology, 2012, 34, 281-297.	6.1	117
49	Innate Immunity in the Respiratory Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 189-201.	2.9	370
50	Type I interferon response to extracellular bacteria in the airway epithelium. Trends in Immunology, 2011, 32, 582-588.	6.8	49
51	Pseudomonas aeruginosa AES-1 Exhibits Increased Virulence Gene Expression during Chronic Infection of Cystic Fibrosis Lung. PLoS ONE, 2011, 6, e24526.	2.5	31
52	Streptococcus pneumoniae DNA Initiates Type I Interferon Signaling in the Respiratory Tract. MBio, 2011, 2, e00016-11.	4.1	128
53	Participation of CD11c ⁺ Leukocytes in Methicillin-Resistant Staphylococcus aureus Clearance from the Lung. Infection and Immunity, 2011, 79, 1898-1904.	2.2	44
54	The Subtilisin-Like Protease AprV2 Is Required for Virulence and Uses a Novel Disulphide-Tethered Exosite to Bind Substrates. PLoS Pathogens, 2010, 6, e1001210.	4.7	81

#	Article	IF	CITATION
55	The NanA Neuraminidase of <i>Streptococcus pneumoniae</i> Infection and Immunity, 2009, 77, 3722-3730.	2.2	132
56	Crystal structures of respiratory pathogen neuraminidases. Biochemical and Biophysical Research Communications, 2009, 380, 467-471.	2.1	27
57	NetB, a New Toxin That Is Associated with Avian Necrotic Enteritis Caused by Clostridium perfringens. PLoS Pathogens, 2008, 4, e26.	4.7	494
58	The Type III Toxins of Pseudomonas aeruginosa Disrupt Epithelial Barrier Function. Journal of Bacteriology, 2008, 190, 2814-2821.	2.2	88
59	Isolation of the Bacteriophage DinoHI from Dichelobacter nodosus and its Interactions with other Integrated Genetic Elements. Open Microbiology Journal, 2008, 2, 1-9.	0.7	18
60	Type IV Fimbrial Biogenesis Is Required for Protease Secretion and Natural Transformation in Dichelobacter nodosus. Journal of Bacteriology, 2007, 189, 5022-5033.	2.2	61
61	Genome sequence and identification of candidate vaccine antigens from the animal pathogen Dichelobacter nodosus. Nature Biotechnology, 2007, 25, 569-575.	17.5	66
62	Regulation of Type IV Fimbrial Biogenesis in Dichelobacter nodosus. Journal of Bacteriology, 2006, 188, 4801-4811.	2.2	28
63	Identification of a Dichelobacter nodosus Ferric Uptake Regulator and Determination of Its Regulatory Targets. Journal of Bacteriology, 2005, 187, 366-375.	2.2	18