Cynthia E Dunning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11028206/publications.pdf

Version: 2024-02-01

		218677	182427
59	2,600 citations	26	51
papers	citations	h-index	g-index
59	59	59	1469
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Describing the spine surgery learning curve during the first two years of independent practice. Medicine (United States), 2021, 100, e27515.	1.0	O
2	Comparison of trans-cortical and cancellous screws to press fit for acetabular shell fixation in total hip arthroplasty: A cadaveric study. Clinical Biomechanics, 2019, 69, 34-38.	1.2	5
3	Does restoration of focal lumbar lordosis for single level degenerative spondylolisthesis result in better patient-reported clinical outcomes? A systematic literature review. Journal of Clinical Neuroscience, 2017, 44, 95-100.	1.5	21
4	Insertion Torques of Self-Drilling Mini-Implants in Simulated Mandibular Bone: Assessment of Potential for Implant Fracture. International Journal of Oral and Maxillofacial Implants, 2016, 31, e57-e64.	1.4	5
5	Use of the alpha shape to quantify finite helical axis dispersion during simulated spine movements. Journal of Biomechanics, 2016, 49, 112-118.	2.1	3
6	Influence of graft size on spinal instability with anterior cervical plate fixation following in vitro flexion-distraction injuries. Spine Journal, 2016 , 16 , 523 - 529 .	1.3	7
7	Medial opening wedge high tibial osteotomy alters knee moments in multiple planes during walking and stair ascent. Gait and Posture, 2015, 42, 165-171.	1.4	23
8	Anatomy of the proximal tibiofibular joint and interosseous membrane, and their contributions to joint kinematics in belowâ€knee amputations. Journal of Anatomy, 2015, 226, 143-149.	1.5	8
9	Fracture resistance of commonly used self-drilling orthodontic mini-implants. Angle Orthodontist, 2015, 85, 26-32.	2.4	17
10	A Refined Technique to Calculate Finite Helical Axes From Rigid Body Trackers. Journal of Biomechanical Engineering, 2014, 136, 124506.	1.3	2
11	Development and validation of a distal radius finite element model to simulate impact loading indicative of a forward fall. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 258-271.	1.8	16
12	In vitro biomechanical evaluation of fibular movement in below knee amputations. Clinical Biomechanics, 2014, 29, 551-555.	1.2	3
13	The effect of static muscle forces on the fracture strength of the intact distal radius in vitro in response to simulated forward fall impacts. Journal of Biomechanics, 2014, 47, 2672-2678.	2.1	5
14	The Effect of Stem Circumferential Grooves on the Stability at the Implant-Cement Interface. Journal of Medical Devices, Transactions of the ASME, 2014, 8 , .	0.7	1
15	The effect of stem surface treatment and material onÂpistoning of ulnar components in linked cemented elbow prostheses. Journal of Shoulder and Elbow Surgery, 2013, 22, 1248-1255.	2.6	9
16	Changes in valgus and varus alignment neutralize aberrant frontal plane knee moments in patients with unicompartmental knee osteoarthritis. Journal of Biomechanics, 2013, 46, 1408-1412.	2.1	26
17	Multivariate injury risk criteria and injury probability scores for fractures to the distal radius. Journal of Biomechanics, 2013, 46, 973-978.	2.1	4
18	Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics, 2013, 46, 1477-1488.	2.1	137

#	Article	lF	CITATIONS
19	Determination of remodeling parameters for a strain-adaptive finite element model of the distal ulna. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2013, 227, 994-1001.	1.8	11
20	Predicting Distal Radius Bone Strains and Injury in Response to Impacts Using Multi-Axial Accelerometers. Journal of Biomechanical Engineering, 2012, 134, 101007.	1.3	2
21	A Biomechanical Assessment of Soft-Tissue Damage in the Cervical Spine Following a Unilateral Facet Injury. Journal of Bone and Joint Surgery - Series A, 2012, 94, e156.	3.0	32
22	The importance of the posterior osteoligamentous complex to subaxial cervical spine stability in relation to a unilateral facet injury. Spine Journal, 2012, 12, 590-595.	1.3	27
23	Failure characteristics of the isolated distal radius in response to dynamic impact loading. Journal of Orthopaedic Research, 2012, 30, 885-892.	2.3	9
24	Determining the optimal system-specific cut-off frequencies for filtering in-vitro upper extremity impact force and acceleration data by residual analysis. Journal of Biomechanics, 2011, 44, 2728-2731.	2.1	13
25	Comparative Assessment of Sacral Screw Loosening Augmented with PMMA Versus a Calcium Triglyceride Bone Cement. Spine, 2011, 36, E699-E704.	2.0	25
26	Injury Tolerance Criteria for Short-Duration Axial Impulse Loading of the Isolated Tibia. Journal of Trauma, 2011, 70, E13-E18.	2.3	23
27	Bone stresses before and after insertion of two commercially available distal ulnar implants using finite element analysis. Journal of Orthopaedic Research, 2011, 29, 1418-1423.	2.3	10
28	Development of a finite element model of the tibia for short-duration high-force axial impact loading. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 205-212.	1.6	17
29	Development of an Apparatus to Produce Fractures From Short-Duration High-Impulse Loading With an Application in the Lower Leg. Journal of Biomechanical Engineering, 2010, 132, 014502.	1.3	18
30	The effect of the density–modulus relationship selected to apply material properties in a finite element model of long bone. Journal of Biomechanics, 2008, 41, 3171-3176.	2.1	72
31	Comparing the Fixation of a Novel Hollow Screw Versus a Conventional Solid Screw in Human Sacra Under Cyclic Loading. Spine, 2008, 33, 1870-1875.	2.0	21
32	The effect of coronoid fractures on elbow kinematics and stability. Clinical Biomechanics, 2007, 22, 183-190.	1.2	78
33	The effect of suture fixation of type I coronoid fractures on the kinematics and stability of the elbow with and without medial collateral ligament repair. Journal of Shoulder and Elbow Surgery, 2007, 16, 213-217.	2.6	79
34	The Effect of Distal Ulnar Implant Stem Material and Length on Bone Strains. Journal of Hand Surgery, 2007, 32, 848-854.	1.6	15
35	Direct comparison of kinematic data collected using an electromagnetic tracking system versus a digital optical system. Journal of Biomechanics, 2007, 40, 930-935.	2.1	31
36	The effect of radial head fracture size on elbow kinematics and stability. Journal of Orthopaedic Research, 2005, 23, 210-217.	2.3	58

3

#	Article	IF	CITATIONS
37	Comparison of Distal Radioulnar Joint Reconstructions Using an Active Joint Motion Simulator. Journal of Hand Surgery, 2005, 30, 733-742.	1.6	52
38	A biomechanical comparison of four reconstruction techniques for the medial collateral ligament-deficient elbow. Journal of Shoulder and Elbow Surgery, 2005, 14, 207-215.	2.6	116
39	Kinematics and stability of the fractured and implant-reconstructed radial head. Journal of Shoulder and Elbow Surgery, 2005, 14, S195-S201.	2.6	67
40	The Medial Collateral Ligament of the Elbow is not Isometric. American Journal of Sports Medicine, 2004, 32, 85-90.	4.2	46
41	Soft-tissue stabilizers of the distal radioulnar joint: an in vitro kinematic study. Journal of Hand Surgery, 2004, 29, 423-431.	1.6	131
42	The Effect of Radial Head Excision and Arthroplasty on Elbow Kinematics and Stability. Journal of Bone and Joint Surgery - Series A, 2004, 86, 1730-1739.	3.0	207
43	Variability and repeatability of the flexion axis at the ulnohumeral joint. Journal of Orthopaedic Research, 2003, 21, 399-404.	2.3	42
44	Development of a motion-controlled in vitro elbow testing system. Journal of Orthopaedic Research, 2003, 21, 405-411.	2.3	36
45	Quantifying translations in the radiohumeral joint: application of a floating axis analysis. Journal of Biomechanics, 2003, 36, 1219-1223.	2.1	7
46	Application of screw displacement axes to quantify elbow instability. Clinical Biomechanics, 2003, 18, 303-310.	1.2	24
47	The effect of radial head fracture size on radiocapitellar joint stability. Clinical Biomechanics, 2003, 18, 677-681.	1.2	47
48	Influence of the pronator quadratus and supinator muscle load on DRUJ stability. Journal of Hand Surgery, 2003, 28, 943-950.	1.6	49
49	An anthropometric study of the distal ulna: Implications for implant design. Journal of Hand Surgery, 2002, 27, 57-60.	1.6	22
50	Single-strand reconstruction of the lateral ulnar collateral ligament restores varus and posterolateral rotatory stability of the elbow. Journal of Shoulder and Elbow Surgery, 2002, 11, 60-64.	2.6	68
51	Single-strand ligament reconstruction of the medial collateral ligament restores valgus elbow stability. Journal of Shoulder and Elbow Surgery, 2002, 11, 65-71.	2.6	51
52	Ilizarov hybrid external fixation for fractures of the distal radius: Part II. Internal fixation versus ilizarov hybrid external fixation: Stability as assessed by cadaveric simulated motion testing. Journal of Hand Surgery, 2001, 26, 218-227.	1.6	6
53	Muscle Forces and Pronation Stabilize the Lateral Ligament Deficient Elbow. Clinical Orthopaedics and Related Research, 2001, 388, 118-124.	1.5	133
54	Simulated active control produces repeatable motion pathways of the elbow in an in vitro testing system. Journal of Biomechanics, 2001, 34, 1039-1048.	2.1	58

# .	Article	IF	CITATIONS
	Ligamentous Stabilizers Against Posterolateral Rotatory Instability of the Elbow. Journal of Bone and Joint Surgery - Series A, 2001, 83, 1823-1828.	3.0	239
	Simulation of elbow and forearm motion in vitro using a load controlled testing apparatus. Journal of Biomechanics, 2000, 33, 635-639.	2.1	74
57	Rehabilitation of the medial collateral ligament-deficient elbow: An in vitro biomechanical study. Journal of Hand Surgery, 2000, 25, 1051-1057.	1.6	99
58	Supplemental pinning improves the stability of external fixation in distal radius fractures during simulated finger and forearm motion. Journal of Hand Surgery, 1999, 24, 992-1000.	1.6	54
59	Metallic Radial Head Arthroplasty Improves Valgus Stability of the Elbow. Clinical Orthopaedics and Related Research, 1999, 368, 114???125.	1.5	139