List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11027807/publications.pdf Version: 2024-02-01

HAROLDKOHN

#	Article	IF	CITATIONS
1	Translational Stroke Research. Stroke, 2017, 48, 2632-2637.	2.0	108
2	H. Steve White: A Champion for Contemporary Epilepsy Research. Neurochemical Research, 2017, 42, 1869-1870.	3.3	1
3	Chimeric derivatives of functionalized amino acids and α-aminoamides: Compounds with anticonvulsant activity in seizure models and inhibitory actions on central, peripheral, and cardiac isoforms of voltage-gated sodium channels. Bioorganic and Medicinal Chemistry, 2015, 23, 3655-3666.	3.0	8
4	Chimeric Agents Derived from the Functionalized Amino Acid, Lacosamide, and the α-Aminoamide, Safinamide: Evaluation of Their Inhibitory Actions on Voltage-Gated Sodium Channels, and Antiseizure and Antinociception Activities and Comparison with Lacosamide and Safinamide. ACS Chemical Neuroscience, 2015, 6, 316-330.	3.5	14
5	A Mentoring Program to Help Junior Faculty Members Achieve Scholarship Success. American Journal of Pharmaceutical Education, 2014, 78, 29.	2.1	32
6	Substituted <i>N</i> -(Biphenyl-4′-yl)methyl (<i>R</i>)-2-Acetamido-3-methoxypropionamides: Potent Anticonvulsants That Affect Frequency (Use) Dependence and Slow Inactivation of Sodium Channels. Journal of Medicinal Chemistry, 2014, 57, 6165-6182.	6.4	5
7	Benzyloxybenzylammonium chlorides: Simple amine salts that display anticonvulsant activity. Bioorganic and Medicinal Chemistry, 2013, 21, 7655-7662.	3.0	4
8	(Biphenyl-4-yl)methylammonium Chlorides: Potent Anticonvulsants That Modulate Na ⁺ Currents. Journal of Medicinal Chemistry, 2013, 56, 5931-5939.	6.4	8
9	Discovery of Lacosamide Affinity Bait Agents That Exhibit Potent Voltage-Gated Sodium Channel Blocking Properties. ACS Chemical Neuroscience, 2013, 4, 463-474.	3.5	4
10	Identification of the Benzyloxyphenyl Pharmacophore: A Structural Unit That Promotes Sodium Channel Slow Inactivation. ACS Chemical Neuroscience, 2012, 3, 1037-1049.	3.5	11
11	Synthesis, anticonvulsant activity, and neuropathic pain-attenuating activity of N-benzyl 2-amino-2-(hetero)aromatic acetamides. Bioorganic and Medicinal Chemistry, 2012, 20, 3551-3564.	3.0	11
12	Development and Characterization of Novel Derivatives of the Antiepileptic Drug Lacosamide That Exhibit Far Greater Enhancement in Slow Inactivation of Voltage-Gated Sodium Channels. ACS Chemical Neuroscience, 2011, 2, 90-106.	3.5	37
13	Identification of a Lacosamide Binding Protein Using an Affinity Bait and Chemical Reporter Strategy: 14-3-3 ζ. Journal of the American Chemical Society, 2011, 133, 11320-11330.	13.7	19
14	Merging Structural Motifs of Functionalized Amino Acids and α-Aminoamides Results in Novel Anticonvulsant Compounds with Significant Effects on Slow and Fast Inactivation of Voltage-Gated Sodium Channels and in the Treatment of Neuropathic Pain. ACS Chemical Neuroscience, 2011, 2, 317-332.	3.5	33
15	Primary Amino Acid Derivatives: Compounds with Anticonvulsant and Neuropathic Pain Protection Activities. Journal of Medicinal Chemistry, 2011, 54, 4815-4830.	6.4	27
16	Primary Amino Acid Derivatives: Substitution of the 4′- <i>N</i> ′-Benzylamide Site in (<i>R</i>)- <i>N</i> ′-Benzyl 2-Amino-3-methylbutanamide, (<i>R</i>)- <i>N</i> ′-Benzyl 2-Amino-3,3-dimethylbutanamide, and (<i>R</i>)- <i>N</i> ′-Benzyl 2-Amino-3-methoxypropionamide Provides Potent Anticonvulsants with Pain-Attenuating Properties. Journal of Medicinal Chemistry,	6.4	14
17	2011, 54, 6417-6431. Defining the Structural Parameters That Confer Anticonvulsant Activity by the Site-by-Site Modification of (<i>R</i>)- <i>N</i> ′-Benzyl 2-Amino-3-methylbutanamide. Journal of Medicinal Chemistry, 2011, 54, 6432-6442.	6.4	10
18	Merging the Structural Motifs of Functionalized Amino Acids and α-Aminoamides: Compounds with Significant Anticonvulsant Activities. Journal of Medicinal Chemistry, 2010, 53, 3756-3771.	6.4	25

#	Article	IF	CITATIONS
19	The Structureâ^'Activity Relationship of the 3-Oxy Site in the Anticonvulsant (<i>R</i>)- <i>N</i> -Benzyl 2-Acetamido-3-methoxypropionamide. Journal of Medicinal Chemistry, 2010, 53, 5716-5726.	6.4	25
20	Synthesis and Anticonvulsant Activities of (<i>R</i>)- <i>N</i> -(4′-Substituted)benzyl 2-Acetamido-3-methoxypropionamides. Journal of Medicinal Chemistry, 2010, 53, 1288-1305.	6.4	50
21	Proteomic searches comparing two (R)-lacosamide affinity baits: An electrophilic arylisothiocyanate and a photoactivated arylazide group. Organic and Biomolecular Chemistry, 2010, 8, 2803.	2.8	17
22	Triphenylphosphine dibromide: a simple one-pot esterification reagent. Tetrahedron, 2009, 65, 456-460.	1.9	27
23	Useful Tools for Biomolecule Isolation, Detection, and Identification: Acylhydrazone-Based Cleavable Linkers. Chemistry and Biology, 2009, 16, 763-772.	6.0	67
24	Lacosamide Isothiocyanate-Based Agents: Novel Agents To Target and Identify Lacosamide Receptors. Journal of Medicinal Chemistry, 2009, 52, 6897-6911.	6.4	39
25	Nucleophilic Activation of a Tetra-Substituted Mitomycin Cyclic Bis-Disulfide. Chemical and Pharmaceutical Bulletin, 2009, 57, 149-157.	1.3	4
26	Synthesis and anticonvulsant activities of N-benzyl (2R)-2-acetamido-3-oxysubstituted propionamide derivatives. Bioorganic and Medicinal Chemistry, 2008, 16, 8968-8975.	3.0	39
27	Lacosamide, a novel anti-convulsant drug, shows efficacy with a wide safety margin in rodent models for epilepsy. Epilepsy Research, 2007, 74, 147-154.	1.6	145
28	A Novel Automated Lazy Learning QSAR (ALL-QSAR) Approach:  Method Development, Applications, and Virtual Screening of Chemical Databases Using Validated ALL-QSAR Models. Journal of Chemical Information and Modeling, 2006, 46, 1984-1995.	5.4	227
29	Fluorine-substituted dihydrobicyclomycins: Synthesis and biochemical and biological properties. Bioorganic and Medicinal Chemistry, 2006, 14, 41-61.	3.0	15
30	3,8,11,16-Tetrakis(aminomethyl)-1,2,9,10-tetrathia-cyclohexadecane tetra-trifluoroacetic acid: synthetic precursor to a novel thio-substituted diamine. Tetrahedron, 2005, 61, 1749-1754.	1.9	4
31	The novel antiepileptic drug lacosamide blocks behavioral and brain metabolic manifestations of seizure activity in the 6Hz psychomotor seizure model. Epilepsy Research, 2005, 67, 81-87.	1.6	33
32	Structural Mechanism of Inhibition of the Rho Transcription Termination Factor by the Antibiotic Bicyclomycin. Structure, 2005, 13, 99-109.	3.3	61
33	Bismuth–dithiol inhibition of the Escherichia coli rho transcription termination factor. Journal of Inorganic Biochemistry, 2005, 99, 841-851.	3.5	16
34	The Molecular Basis for the Mode of Action of Bicyclomycin. Current Drug Targets Infectious Disorders, 2005, 5, 273-295.	2.1	64
35	Development of a Technique to Determine Bicyclomycin-Rho Binding and Stoichiometry by Isothermal Titration Calorimetry and Mass Spectrometry. Journal of the American Chemical Society, 2005, 127, 2741-2751.	13.7	26
36	7-N,7′-N′-(1″,2″-Dithianyl-3″,6″-dimethylenyl)bismitomycin C: synthesis and nucleophilic activati dimeric mitomycin. Organic and Biomolecular Chemistry, 2005, 3, 471-482.	on of a 2.8	15

#	Article	IF	CITATIONS
37	A quantitative structure-activity relationship study for α-substituted acetamido-N-benzylacetamide derivatives — A novel anticonvulsant drug class. Canadian Journal of Chemistry, 2005, 83, 37-45.	1.1	11
38	C(8)-Substituted 1-azabicyclo[3.3.1]non-3-enes: a novel scaffold for muscarinic receptor ligands. Bioorganic and Medicinal Chemistry, 2004, 12, 2357-2367.	3.0	2
39	N-Substituted amino acid N′-benzylamides: synthesis, anticonvulsant, and metabolic activities. Bioorganic and Medicinal Chemistry, 2004, 12, 3079-3096.	3.0	18
40	Application of Predictive QSAR Models to Database Mining:  Identification and Experimental Validation of Novel Anticonvulsant Compounds. Journal of Medicinal Chemistry, 2004, 47, 2356-2364.	6.4	148
41	Cyclic Disulfide C(8) Iminoporfiromycin:Â Nucleophilic Activation of a Porfiromycin. Journal of the American Chemical Society, 2004, 126, 4281-4292.	13.7	18
42	Functionalized amido ketones: new anticonvulsant agents. Bioorganic and Medicinal Chemistry, 2003, 11, 4275-4285.	3.0	21
43	Metalâ^'1,4-Dithio-2,3-dihydroxybutane Chelates:Â Novel Inhibitors of the Rho Transcription Termination Factorâ€. Biochemistry, 2003, 42, 9121-9126.	2.5	5
44	Metal Dependency for Transcription Factor Rho Activationâ€. Biochemistry, 2003, 42, 1652-1659.	2.5	9
45	Synthetic Enantiopure Aziridinomitosenes:Â Preparation, Reactivity, and DNA Alkylation Studies. Journal of the American Chemical Society, 2003, 125, 15796-15806.	13.7	50
46	Bicyclomycin Fluorescent Probes:Â Synthesis and Biochemical, Biophysical, and Biological Properties. Journal of Organic Chemistry, 2003, 68, 5575-5587.	3.2	19
47	C(8) Substituted 1-Azabicyclo[3.3.1]non-3-enes and C(8) Substituted 1-Azabicyclo[3.3.1]nonan-4-ones:Â Novel Muscarinic Receptor Antagonists. Journal of Medicinal Chemistry, 2003, 46, 2216-2226.	6.4	14
48	ATP Binding to Rho Transcription Termination Factor. Journal of Biological Chemistry, 2003, 278, 13719-13727.	3.4	16
49	Phosphine-assisted Rearrangement of 4,5-Dihydroxy-1,2-dithianes to 4-Hydroxy-3-mercaptotetrahydrothiophenes. Heterocycles, 2003, 60, 47.	0.7	10
50	N(2)-Substituted D,L-Cycloserine Derivatives: Synthesis and Evaluation as Alanine Racemase Inhibitors Journal of Antibiotics, 2003, 56, 160-168.	2.0	24
51	Mutations in the Rho Transcription Termination Factor That Affect RNA Tracking. Journal of Biological Chemistry, 2002, 277, 30023-30030.	3.4	25
52	The Mg2+Requirements for Rho Transcription Termination Factor:Â Catalysis and Bicyclomycin Inhibitionâ€. Biochemistry, 2002, 41, 12377-12383.	2.5	11
53	Design and Evaluation of Affinity Labels of Functionalized Amino Acid Anticonvulsants. Journal of Medicinal Chemistry, 2002, 45, 4762-4773.	6.4	25
54	7-N-(Mercaptoalkyl)mitomycins:  Implications of Cyclization for Drug Function. Journal of the American Chemical Society, 2002, 124, 4666-4677.	13.7	28

#	Article	IF	CITATIONS
55	Quantitative Structureâ^'Activity Relationship Analysis of Functionalized Amino Acid Anticonvulsant Agents Using k Nearest Neighbor and Simulated Annealing PLS Methods. Journal of Medicinal Chemistry, 2002, 45, 2811-2823.	6.4	139
56	Efficient Synthesis of Medium-Sized Cyclic Ether Diamines. Journal of Organic Chemistry, 2002, 67, 1692-1695.	3.2	12
57	Efficient Synthesis of Medium‧ized Cyclic Ether Diamines ChemInform, 2002, 33, 109-109.	0.0	0
58	C(5)â^'C(5a)-Modified Bicyclomycins:Â Synthesis, Structure, and Biochemical and Biological Properties. Journal of Organic Chemistry, 2001, 66, 2251-2264.	3.2	10
59	Synthesis and Structural Studies of Aza Analogues of Functionalized Amino Acids:Â New Anticonvulsant Agents. Journal of Medicinal Chemistry, 2001, 44, 1475-1478.	6.4	32
60	The effect of C(5) cytosine methylation at CpG sequences on mitomycin–DNA bonding profiles. Bioorganic and Medicinal Chemistry, 2001, 9, 863-873.	3.0	15
61	The inefficiency of incisions of ecteinascidin 743–DNA adducts by the UvrABC nuclease and the unique structural feature of the DNA adducts can be used to explain the repair-dependent toxicities of this antitumor agent. Chemistry and Biology, 2001, 8, 1033-1049.	6.0	69
62	Synthesis, DNA Cross-Linking Activity, and Cytotoxicity of Dimeric Mitomycins. Journal of Medicinal Chemistry, 2001, 44, 3453-3462.	6.4	25
63	Functionalized amino acid anticonvulsants: synthesis and pharmacological evaluation of conformationally restricted analogues. Bioorganic and Medicinal Chemistry, 2001, 9, 2693-2708.	3.0	61
64	Quinone-cyclized Porfiromycins. Heterocycles, 2001, 55, 1347.	0.7	4
65	Formation of Aromatic Rings through Enamine Annulation. Organic Letters, 2000, 2, 1773-1775.	4.6	11
66	C5 Cytosine Methylation at CpG Sites Enhances Sequence Selectivity of Mitomycin Câ [~] 'DNA Bonding. Biochemistry, 2000, 39, 2612-2618.	2.5	27
67	Rho Transcription Factor: Symmetry and Binding of Bicyclomycinâ€. Biochemistry, 2000, 39, 9077-9083.	2.5	18
68	5a-Formylbicyclomycin: Studies on the Bicyclomycinâ^'Rho Interactionâ€. Biochemistry, 2000, 39, 9067-9076.	2.5	7
69	Identifying the Bicyclomycin Binding Domain through Biochemical Analysis of Antibiotic-resistant Rho Proteins. Journal of Biological Chemistry, 1999, 274, 7316-7324.	3.4	41
70	The anticonvulsant activities of N-benzyl 3-methoxypropionamides. Bioorganic and Medicinal Chemistry, 1999, 7, 2381-2389.	3.0	33
71	Studies on the Mode of Action of Mitomycin C(7) Aminoethylene Disulfides (BMS-181174 and KW-2149):Â Reactivity of 7-N-(Mercaptoethyl)mitomycin C. Journal of Medicinal Chemistry, 1999, 42, 788-790.	6.4	31
72	Synthesis and anticonvulsant activities of (R)-(O)-methylserine derivatives. Tetrahedron: Asymmetry, 1998, 9, 3841-3854.	1.8	26

#	Article	IF	CITATIONS
73	5a-Methyl-Substituted Bicyclomycins:Â Synthesis and Chemical, Biochemical, and Biological Properties. Journal of Organic Chemistry, 1998, 63, 1290-1298.	3.2	6
74	Evidence for the Location of Bicyclomycin Binding to theEscherichia coli Transcription Termination Factor Rho. Journal of Biological Chemistry, 1998, 273, 34033-34041.	3.4	13
75	Design, Syntheses, and Evaluations of Bicyclomycin-Based Rho Inactivators. Journal of Organic Chemistry, 1997, 62, 5432-5440.	3.2	8
76	C(7)-Substituted Diaminomitomycins:  Synthesis, Structure, and Chemical Reactivity. Journal of Organic Chemistry, 1997, 62, 5404-5412.	3.2	15
77	Role of the [4.2.2] Bicyclic Unit in Bicyclomycin:Â Synthesis, Structure, Chemical, Biochemical, and Biological Properties. Journal of Organic Chemistry, 1996, 61, 7756-7763.	3.2	19
78	Role of the C(5)â^'C(5a) Exomethylene Group in Bicyclomycin:Â Synthesis, Structure, and Biochemical and Biological Properties. Journal of Organic Chemistry, 1996, 61, 7764-7776.	3.2	19
79	Role of the C(1) Triol Group in Bicyclomycin:Â Synthesis and Biochemical and Biological Properties. Journal of Organic Chemistry, 1996, 61, 7750-7755.	3.2	16
80	Mitomycin Betaines: Synthesis, Structure, and Solvolytic Reactivityâ€. Journal of Organic Chemistry, 1996, 61, 9202-9206.	3.2	4
81	Role of the C-10 Substituent in Mitomycin C-1â~'DNA Bonding. Journal of the American Chemical Society, 1996, 118, 2326-2331.	13.7	112
82	Design, Synthesis, and Evaluation of Mitomycin-Tethered Phosphorothioate Oligodeoxynucleotides. Bioconjugate Chemistry, 1996, 7, 659-669.	3.6	6
83	Concerningin VitroMitomycinâ^'DNA Alkylation. Journal of the American Chemical Society, 1996, 118, 3765-3766.	13.7	37
84	Synthesis and Anticonvulsant Activities of N-Benzyl-2-acetamidopropionamide Derivatives. Journal of Medicinal Chemistry, 1996, 39, 1907-1916.	6.4	150
85	Novel ring transformations for 5,5a-dibromobicyclomycin and derivatives. Tetrahedron, 1996, 52, 833-842.	1.9	2
86	Studies on the mechanism of activation of C(7) ethylenediamine substituted mitomycins. Relevance to the proposed mode of action of BMY-25067 and KW-2149. Tetrahedron Letters, 1996, 37, 2337-2340.	1.4	16
87	The anticonvulsant activities of functionalized N-benzyl 2-acetamidoacetamides. The importance of the 2-acetamido substituent. Bioorganic and Medicinal Chemistry, 1996, 4, 2105-2114.	3.0	18
88	The Antibiotic Bicyclomycin Affects the Secondary RNA Binding Site of Escherichia coli Transcription Termination Factor Rho. Journal of Biological Chemistry, 1996, 271, 25369-25374.	3.4	59
89	Trimethylsilyl halides: Effective reagents for the synthesis of β-halo amino acid derivatives. Tetrahedron Letters, 1995, 36, 7011-7014.	1.4	8
90	C(10) Halogen 10-Des(carbamoyloxy)porfiromycins: Synthesis, Chemistry, and Biological Activity. Journal of Organic Chemistry, 1995, 60, 3391-3396.	3.2	13

#	Article	IF	CITATIONS
91	Bicyclomycin Oxidative Transformations. Synthesis and Chemical Properties of Bicyclomycin-5-norketone. Journal of Organic Chemistry, 1995, 60, 5346-5351.	3.2	5
92	Bicyclomycin and Dihydrobicyclomycin Inhibition Kinetics ofEscherichia colirho-Dependent Transcription Termination Factor ATPase Activity. Archives of Biochemistry and Biophysics, 1995, 323, 447-454.	3.0	40
93	Structural Requirements for Mitomycin C DNA Bonding. Biochemistry, 1995, 34, 7120-7126.	2.5	20
94	Anticonvulsant Properties ofNâ€Substituted α,αâ€Diamino Acid Derivatives. Journal of Pharmaceutical Sciences, 1994, 83, 689-691.	3.3	28
95	Synthesis and Anticonvulsant Activities of .alphaAcetamido-N-benzylacetamide Derivatives Containing an Electron-Deficient .alphaHeteroaromatic Substituent. Journal of Medicinal Chemistry, 1994, 37, 4567-4571.	6.4	33
96	Synthesis and reactivity of bicyclomycin C(3') amines. Journal of the American Chemical Society, 1994, 116, 471-478.	13.7	11
97	Chemical, biochemical, and biological studies on select C1 triol modified bicyclomycins. Journal of the American Chemical Society, 1994, 116, 9815-9826.	13.7	2
98	Synthesis and anticonvulsant activities of .alphaheterocyclic .alphaacetamido-N-benzylacetamide derivatives. Journal of Medicinal Chemistry, 1993, 36, 3350-3360.	6.4	47
99	Comparative reactivities of mitomycin C, 7-(N-piperidino)mitomycin, and mitomycin A. The role of the C(7) substituent. Journal of the American Chemical Society, 1993, 115, 10519-10526.	13.7	9
100	Studies on the reactivity of reductively activated mitomycin C. Journal of the American Chemical Society, 1993, 115, 10510-10518.	13.7	39
101	Transcription termination factor rho: The site of bicyclomycin inhibition in Escherichia coli. Biochemistry, 1993, 32, 3564-3570.	2.5	96
102	Studies on the use of disodium dithionite for the reductive activation of mitomycin C. Journal of the American Chemical Society, 1993, 115, 10497-10509.	13.7	21
103	Reductively activated mitomycin C: an efficient trapping reagent for electrophiles. Journal of the American Chemical Society, 1992, 114, 7958-7959.	13.7	10
104	On the origins of the DNA sequence selectivity of mitomycin monoalkylation transformations. Journal of the American Chemical Society, 1992, 114, 9218-9220.	13.7	50
105	The synthesis and reactivity of [N(8)-C(3')]-cyclized bicyclomycin. Evidence of the role of the C(1)-triol group in bicyclomycin-mediated processes. Journal of Organic Chemistry, 1992, 57, 5223-5231.	3.2	7
106	Recognition of mitomycin C-DNA monoadducts by UVRABC nuclease. Journal of the American Chemical Society, 1992, 114, 5501-5509.	13.7	32
107	Studies on the mechanism of mitomycin C(1) electrophilic transformations: structure-reactivity relationships. Journal of Organic Chemistry, 1992, 57, 1799-1807.	3.2	31
108	Sodium dithionite-mediated mitomycin C reductive activation processes. Tetrahedron Letters, 1992, 33, 4709-4712.	1.4	12

#	Article	IF	CITATIONS
109	Preparation and anticonvulsant activity of a series of functionalized .alphaheteroatom-substituted amino acids. Journal of Medicinal Chemistry, 1991, 34, 2444-2452.	6.4	57
110	Studies on the bonding specificity for mitomycin C-DNA monoalkylation processes. Journal of the American Chemical Society, 1991, 113, 275-283.	13.7	95
111	Studies on the reactivity of bicyclomycin 3'-O-methanesulfonate. A novel ring-expansion transformation. Journal of Organic Chemistry, 1991, 56, 5462-5464.	3.2	3
112	7-Aminoaziridinomitosenes: synthesis, structure, and chemistry. Journal of Organic Chemistry, 1991, 56, 4648-4653.	3.2	31
113	Studies on the use of chromium dichlorate for the reductive activation of Mitomycin C. Journal of the American Chemical Society, 1991, 113, 4634-4644.	13.7	26
114	Functionalized 5,6â€dihydroâ€2 <i>H</i> â€1,2,6â€thiadiazine 1,1â€dioxides. Synthesis, structure and chemistry. Journal of Heterocyclic Chemistry, 1990, 27, 2107-2111.	2.6	17
115	Anticonvulsant Properties of 3-Oxo- and 3-Imino-4-Substituted 1,2,5-Thiadiazolidine 1,1-Dioxides. Journal of Pharmaceutical Sciences, 1990, 79, 716-718.	3.3	10
116	Studies on the reactivity of bicyclomycin with thiols. Journal of the American Chemical Society, 1990, 112, 3114-3121.	13.7	15
117	Preparation and anticonvulsant activity of a series of functionalized .alphaaromatic and .alphaheteroaromatic amino acids. Journal of Medicinal Chemistry, 1990, 33, 919-926.	6.4	53
118	Studies on the reactivity of bicyclomycin with amines. Journal of the American Chemical Society, 1989, 111, 4895-4903.	13.7	16
119	Mitomycin C analogs with a substituted hydrazine at position 7. Synthesis, spectral properties, and biological activity. Journal of Medicinal Chemistry, 1989, 32, 248-252.	6.4	5
120	Studies on the reactivity of bicyclomycin with nucleophilic amino acid derivatives. Journal of Organic Chemistry, 1989, 54, 4000-4003.	3.2	9
121	3-Oxo- and 3-imino-4-substituted-1,2,5-thiadiazolidine 1,1-dioxides: synthesis, spectral properties, and selected chemistry. Journal of Organic Chemistry, 1989, 54, 3077-3083.	3.2	44
122	Structural studies of bicyclomycin. Journal of Heterocyclic Chemistry, 1988, 25, 1511-1517.	2.6	5
123	Observations on the activation of bicyclomycin. Journal of the American Chemical Society, 1988, 110, 4089-4090.	13.7	12
124	Reinterpretation of the bicyclomycin-sodium methanethiolate reaction. Journal of the American Chemical Society, 1988, 110, 3661-3663.	13.7	18
125	Marked stereospecificity in a new class of anticonvulsants. Brain Research, 1988, 457, 371-375.	2.2	41
126	Studies on the chemical reactivity of bicyclomycin: acid hydrolysis. Journal of Organic Chemistry, 1988, 53, 2769-2773.	3.2	14

#	Article	IF	CITATIONS
127	Synthesis of functionalized nonâ€natural amino acid derivatives via amidoalkylation transformations. International Journal of Peptide and Protein Research, 1988, 32, 279-291.	0.1	5
128	Functionalized DL-amino acid derivatives. Potent new agents for the treatment of epilepsy. Journal of Medicinal Chemistry, 1987, 30, 567-574.	6.4	56
129	Mechanistic studies on the mode of reaction of mitomycin C under catalytic and electrochemical reductive conditions. Journal of the American Chemical Society, 1987, 109, 1833-1840.	13.7	35
130	Synthesis and antineoplastic activity of 1a-formyl and 1a-thioformyl derivatives of mitomycin C and 2-methylaziridine. Journal of Medicinal Chemistry, 1987, 30, 1767-1773.	6.4	17
131	The electrophilic and nucleophilic character of the carbon-10 methylene group in mitosenes revealed. Journal of the American Chemical Society, 1986, 108, 296-297.	13.7	22
132	Stereoselective synthesis of vicinal diamines from alkenes and cyanamide. Journal of the American Chemical Society, 1985, 107, 2931-2943.	13.7	59
133	Studies on the reaction of mitomycin C with potassium thiobenzoate under reductive conditions. Journal of Organic Chemistry, 1985, 50, 293-298.	3.2	17
134	Effect of Structural Modification of the Hydantoin Ring on Anticonvulsant Activity. Journal of Medicinal Chemistry, 1985, 28, 601-606.	6.4	82
135	A new reductive procedure for the preparation of vicinal diamines and monoamines. Tetrahedron Letters, 1984, 25, 399-402.	1.4	21
136	Reactions of mitomycin C with potassium ethyl xanthate in neutral aqueous solution. Journal of Organic Chemistry, 1983, 48, 5026-5033.	3.2	24
137	Studies on the reaction of mitomycin C with potassium ethyl monothiocarbonate under reductive conditions. Journal of Organic Chemistry, 1983, 48, 5033-5041.	3.2	34
138	Studies concerning the mechanism of electrophilic substitution reactions of mitomycin C. Journal of the American Chemical Society, 1983, 105, 4105-4106.	13.7	27
139	New stereoselective method for the preparation of vicinal diamines from olefins and cyanamide. Journal of the American Chemical Society, 1983, 105, 4106-4108.	13.7	33
140	Selective reductions of 3-substituted hydantoins to 4-hydroxy-2-imidazolidinones and vicinal diamines. Journal of Organic Chemistry, 1983, 48, 2246-2254.	3.2	43
141	Syntheses and spectral properties of 2â€Thiobiotin and biotin derivatives. Journal of Heterocyclic Chemistry, 1981, 18, 1425-1436.	2.6	13
142	Model studies on the mechanism of biotin-dependent carboxylations. 2. Site of protonation vs. carbon dioxide transfer. Journal of the American Chemical Society, 1980, 102, 3928-3939.	13.7	18
143	Selective formation and hydrolysis of derivatives of 4-iodo-3-ureido-1-butanol. Tetrahedron Letters, 1979, 20, 215-218.	1.4	3
144	Syntheses and Pharmacological Activity of N-Acyl-substituted Imidazolidinethiones and Thioimidazolines. Journal of Pharmaceutical Sciences, 1978, 67, 600-602.	3.3	5

#	Article	IF	CITATIONS
145	Syntheses and spectral properties of substituted imidazolidones and imidazolines. Journal of Organic Chemistry, 1977, 42, 941-948.	3.2	39
146	Syntheses and pharmacological activity of substituted imidazolidinethiones and thioimidazolines. Journal of Medicinal Chemistry, 1977, 20, 158-160.	6.4	21
147	Model studies on the mechanism of biotin dependent carboxylations. Journal of the American Chemical Society, 1976, 98, 3690-3694.	13.7	21
148	An isosteric substitution reaction of substituted imidazolidinethiones. Tetrahedron Letters, 1976, 17, 3093-3096.	1.4	8
149	Dependence of mechanism on pH for deuterium-hydrogen exchange in 1-methyltetrazole-5-d. Transition metal ion catalysis of a deprotonation process. Journal of the American Chemical Society, 1972, 94, 5759-5765.	13.7	18