
Kei-Ichiro Inamori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11023499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dystroglycan Function Requires Xylosyl- and Glucuronyltransferase Activities of LARGE. Science, 2012, 335, 93-96.	12.6	264
2	Loss of α-Dystroglycan Laminin Binding in Epithelium-derived Cancers Is Caused by Silencing of LARGE. Journal of Biological Chemistry, 2009, 284, 11279-11284.	3.4	96
3	The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation. ELife, 2014, 3, .	6.0	96
4	N-Acetylglucosaminyltransferase IX Acts on the GlcNAcl̂²1,2-Manl̂±1-Ser/Thr Moiety, Forming a 2,6-Branched Structure in Brain O-Mannosyl Glycan. Journal of Biological Chemistry, 2004, 279, 2337-2340.	3.4	90
5	Molecular Cloning and Characterization of Human GnT-IX, a Novel β1,6-N-Acetylglucosaminyltransferase That Is Specifically Expressed in the Brain. Journal of Biological Chemistry, 2003, 278, 43102-43109.	3.4	86
6	A serine protease zymogen functions as a pattern-recognition receptor for lipopolysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 953-958.	7.1	83
7	Loss of Branched O-Mannosyl Glycans in Astrocytes Accelerates Remyelination. Journal of Neuroscience, 2013, 33, 10037-10047.	3.6	65
8	A Newly Identified Horseshoe Crab Lectin with Specificity for Blood Group A Antigen Recognizes Specific O-Antigens of Bacterial Lipopolysaccharides. Journal of Biological Chemistry, 1999, 274, 3272-3278.	3.4	61
9	Xylosyl- and glucuronyltransferase functions of LARGE in α-dystroglycan modification are conserved in LARGE2. Glycobiology, 2013, 23, 295-302.	2.5	55
10	A Toll-like receptor in horseshoe crabs. Immunological Reviews, 2004, 198, 106-115.	6.0	49
11	Biology of GM3 Ganglioside. Progress in Molecular Biology and Translational Science, 2018, 156, 151-195.	1.7	45
12	High expression ofN-acetylglucosaminyltransferase V in favorable neuroblastomas: Involvement of its effect on apoptosis. FEBS Letters, 2006, 580, 627-632.	2.8	42
13	Role of dystroglycan in limiting contraction-induced injury to the sarcomeric cytoskeleton of mature skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10992-10997.	7.1	37
14	Systematic Synthesis of Bisubstrate-Type Inhibitors ofN-Acetylglucosaminyltransferases. Chemistry - A European Journal, 2006, 12, 3449-3462.	3.3	29
15	Homeostatic and pathogenic roles of <scp>GM</scp> 3 ganglioside molecular species in <scp>TLR</scp> 4 signaling in obesity. EMBO Journal, 2020, 39, e101732.	7.8	25
16	Globo-series glycosphingolipids enhance Toll-like receptor 4-mediated inflammation and play a pathophysiological role in diabetic nephropathy. Glycobiology, 2019, 29, 260-268.	2.5	24
17	Endogenous Glucuronyltransferase Activity of LARGE or LARGE2 Required for Functional Modification of α-Dystroglycan in Cells and Tissues. Journal of Biological Chemistry, 2014, 289, 28138-28148.	3.4	19
18	Synthesis of a Bisubstrate-Type Inhibitor ofN-Acetylglucosaminyltransferases. Angewandte Chemie - International Edition, 2004, 43, 5674-5677.	13.8	17

Kei-Ichiro Inamori

#	ARTICLE	IF	CITATIONS
19	LARGE2-dependent glycosylation confers laminin-binding ability on proteoglycans. Glycobiology, 2016, 26, 1284-1296.	2.5	17
20	NPC1L1-dependent intestinal cholesterol absorption requires ganglioside GM3 in membrane microdomains. Journal of Lipid Research, 2018, 59, 2181-2187.	4.2	16
21	Deficient ganglioside synthesis restores responsiveness to leptin and melanocortin signaling in obese KKAy mice. Journal of Lipid Research, 2018, 59, 1472-1481.	4.2	16
22	Demonstration of the expression and the enzymatic activity of N-acetylglucosaminyltransferase IX in the mouse brain. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 678-684.	2.4	11
23	Homeostatic and pathogenic roles of the GM3 ganglioside. FEBS Journal, 2022, 289, 5152-5165.	4.7	10
24	Roles of Gangliosides in Hypothalamic Control of Energy Balance: New Insights. International Journal of Molecular Sciences, 2020, 21, 5349.	4.1	9
25	Ganglioside GM3 Synthase Deficiency in Mouse Models and Human Patients. International Journal of Molecular Sciences, 2022, 23, 5368.	4.1	4
26	Mannosyl (Alpha-1,6-)-Glycoprotein Beta-1,6-N-Acetyl-Glucosaminyltransferase, Isozyme B (MGAT5B). , 2014, , 247-255.		2
27	Like-Glycosyltransferase; Glycosyltransferase-Like 1B (LARGE, GYLTL1B). , 2014, , 1167-1179.		0
28	Regulation of Leptin Receptor Signaling by Gangliosides. Trends in Glycoscience and Glycotechnology, 2022, 34, E25-E28.	0.1	0
29	Regulation of Leptin Receptor Signaling by Gangliosides. Trends in Glycoscience and Glycotechnology,	0.1	0