Alyssa H Hasty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1102118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sterol Regulatory Element-binding Protein-1 as a Key Transcription Factor for Nutritional Induction of Lipogenic Enzyme Genes. Journal of Biological Chemistry, 1999, 274, 35832-35839.	3.4	602
2	Identification of Liver X Receptor-Retinoid X Receptor as an Activator of the Sterol Regulatory Element-Binding Protein 1c Gene Promoter. Molecular and Cellular Biology, 2001, 21, 2991-3000.	2.3	465
3	Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nature Medicine, 2007, 13, 1193-1202.	30.7	459
4	Absence of Sterol Regulatory Element-binding Protein-1 (SREBP-1) Ameliorates Fatty Livers but Not Obesity or Insulin Resistance in Lep/Lep Mice. Journal of Biological Chemistry, 2002, 277, 19353-19357.	3.4	327
5	Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes. Journal of Lipid Research, 2002, 43, 1220-1235.	4.2	314
6	A Crucial Role of Sterol Regulatory Element-binding Protein-1 in the Regulation of Lipogenic Gene Expression by Polyunsaturated Fatty Acids. Journal of Biological Chemistry, 1999, 274, 35840-35844.	3.4	313
7	Increased atherosclerosis in mice reconstituted with apolipoprotein E null macrophages. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4647-4652.	7.1	273
8	Cross-Talk between Peroxisome Proliferator-Activated Receptor (PPAR) α and Liver X Receptor (LXR) in Nutritional Regulation of Fatty Acid Metabolism. I. PPARs Suppress Sterol Regulatory Element Binding Protein-1c Promoter through Inhibition of LXR Signaling. Molecular Endocrinology, 2003, 17, 1240-1254.	3.7	264
9	Direct Effect of Cholesterol on Insulin Secretion. Diabetes, 2007, 56, 2328-2338.	0.6	260
10	Dual regulation of mouse Δ5- and Δ6-desaturase gene expression by SREBP-1 and PPARα. Journal of Lipid Research, 2002, 43, 107-114.	4.2	256
11	Macrophage infiltration into adipose tissue: initiation, propagation and remodeling. Future Lipidology, 2008, 3, 545-556.	0.5	227
12	Promoter Analysis of the Mouse Sterol Regulatory Element-binding Protein-1c Gene. Journal of Biological Chemistry, 2000, 275, 31078-31085.	3.4	225
13	Dual regulation of mouse Delta(5)- and Delta(6)-desaturase gene expression by SREBP-1 and PPARalpha. Journal of Lipid Research, 2002, 43, 107-14.	4.2	220
14	Mouse models of the metabolic syndrome. DMM Disease Models and Mechanisms, 2010, 3, 156-166.	2.4	215
15	Severe Hypercholesterolemia, Hypertriglyceridemia, and Atherosclerosis in Mice Lacking Both Leptin and the Low Density Lipoprotein Receptor. Journal of Biological Chemistry, 2001, 276, 37402-37408.	3.4	194
16	A decade of progress in adipose tissue macrophage biology. Immunological Reviews, 2014, 262, 134-152.	6.0	178
17	Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system. Brain, Behavior, and Immunity, 2014, 35, 33-42.	4.1	172
18	Cloning and characterization of a mammalian fatty acyl-CoA elongase as a lipogenic enzyme regulated by SREBPs. Journal of Lipid Research, 2002, 43, 911-920.	4.2	172

#	Article	IF	CITATIONS
19	TFE3 transcriptionally activates hepatic IRS-2, participates in insulin signaling and ameliorates diabetes. Nature Medicine, 2006, 12, 107-113.	30.7	168
20	Insulin-Independent Induction of Sterol Regulatory Element-Binding Protein-1c Expression in the Livers of Streptozotocin-Treated Mice. Diabetes, 2004, 53, 560-569.	0.6	167
21	Toll-like Receptor 4 Deficiency Promotes the Alternative Activation of Adipose Tissue Macrophages. Diabetes, 2012, 61, 2718-2727.	0.6	148
22	Impact of increased adipose tissue mass on inflammation, insulin resistance, and dyslipidemia. Current Diabetes Reports, 2009, 9, 26-32.	4.2	145
23	Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes. Journal of Lipid Research, 2002, 43, 1220-35.	4.2	135
24	Leptin requires canonical migratory signaling pathways for induction of monocyte and macrophage chemotaxis. American Journal of Physiology - Cell Physiology, 2007, 293, C1481-C1488.	4.6	134
25	Cloning and characterization of a mammalian fatty acyl-CoA elongase as a lipogenic enzyme regulated by SREBPs. Journal of Lipid Research, 2002, 43, 911-20.	4.2	133
26	Obesity Alters Adipose Tissue Macrophage Iron Content and Tissue Iron Distribution. Diabetes, 2014, 63, 421-432.	0.6	131
27	Adipose tissue recruitment of leukocytes. Current Opinion in Lipidology, 2010, 21, 172-177.	2.7	130
28	Defective Phagocytosis of Apoptotic Cells by Macrophages in Atherosclerotic Lesions of ob/ob Mice and Reversal by a Fish Oil Diet. Circulation Research, 2009, 105, 1072-1082.	4.5	128
29	Sterol Regulatory Element-binding Protein-1 Is Regulated by Glucose at the Transcriptional Level. Journal of Biological Chemistry, 2000, 275, 31069-31077.	3.4	127
30	Plasminogen activator inhibitor-1 modulates adipocyte differentiation. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E103-E113.	3.5	113
31	Recombinant Leptin Promotes Atherosclerosis and Thrombosis in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, e119-22.	2.4	110
32	Retroviral Gene Therapy in ApoE-Deficient Mice. Circulation, 1999, 99, 2571-2576.	1.6	106
33	Weight Cycling Increases T-Cell Accumulation in Adipose Tissue and Impairs Systemic Glucose Tolerance. Diabetes, 2013, 62, 3180-3188.	0.6	102
34	The role of chemokines in recruitment of immune cells to the artery wall and adipose tissue. Vascular Pharmacology, 2010, 52, 27-36.	2.1	101
35	Hyaluronan Accumulates With High-Fat Feeding and Contributes to Insulin Resistance. Diabetes, 2013, 62, 1888-1896.	0.6	100
36	Regulation of tissue iron homeostasis: the macrophage "ferrostat― JCI Insight, 2020, 5, .	5.0	100

#	Article	IF	CITATIONS
37	Nitro–Fatty Acids Reduce Atherosclerosis in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 938-945.	2.4	99
38	Stearic Acid Accumulation in Macrophages Induces Toll-Like Receptor 4/2-Independent Inflammation Leading to Endoplasmic Reticulum Stress–Mediated Apoptosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1687-1695.	2.4	99
39	Macrophage-Targeted Therapeutics for Metabolic Disease. Trends in Pharmacological Sciences, 2018, 39, 536-546.	8.7	93
40	Diet-Induced Increases in Adiposity, but Not Plasma Lipids, Promote Macrophage Infiltration Into White Adipose Tissue. Diabetes, 2007, 56, 564-573.	0.6	91
41	The role of adipose tissue in mediating the beneficial effects of dietary fish oil. Journal of Nutritional Biochemistry, 2011, 22, 101-108.	4.2	90
42	Fish Oil Increases Cholesterol Storage in White Adipose Tissue with Concomitant Decreases in Inflammation, Hepatic Steatosis, and Atherosclerosis in Mice. Journal of Nutrition, 2007, 137, 1776-1782.	2.9	88
43	Palmitate Impairs and Eicosapentaenoate Restores Insulin Secretion Through Regulation of SREBP-1c in Pancreatic Islets. Diabetes, 2008, 57, 2382-2392.	0.6	84
44	The role of lipolysis in mediating the proinflammatory effects of very low density lipoproteins in mouse peritoneal macrophages. Journal of Lipid Research, 2006, 47, 1406-1415.	4.2	81
45	Impact of macrophage toll-like receptor 4 deficiency on macrophage infiltration into adipose tissue and the artery wall in mice. Diabetologia, 2009, 52, 318-328.	6.3	81
46	Cyclin-dependent Kinase Inhibitor, p21WAF1/CIP1, Is Involved in Adipocyte Differentiation and Hypertrophy, Linking to Obesity, and Insulin Resistance. Journal of Biological Chemistry, 2008, 283, 21220-21229.	3.4	75
47	Central Nervous System Neuropeptide Y Signaling Modulates VLDL Triglyceride Secretion. Diabetes, 2008, 57, 1482-1490.	0.6	72
48	CD8 ⁺ T cells regulate liver injury in obesity-related nonalcoholic fatty liver disease. American Journal of Physiology - Renal Physiology, 2020, 318, G211-G224.	3.4	68
49	Adipose tissue macrophages: Unique polarization and bioenergetics in obesity. Immunological Reviews, 2020, 295, 101-113.	6.0	68
50	Reduced ABCA1-Mediated Cholesterol Efflux and Accelerated Atherosclerosis in Apolipoprotein E–Deficient Mice Lacking Macrophage-Derived ACAT1. Circulation, 2005, 111, 2373-2381.	1.6	67
51	Carbenoxolone treatment attenuates symptoms of metabolic syndrome and atherogenesis in obese, hyperlipidemic mice. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1517-E1528.	3.5	64
52	Loss of ovarian function in the VCD mouse-model of menopause leads to insulin resistance and a rapid progression into the metabolic syndrome. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R587-R592.	1.8	63
53	Granuphilin is activated by SREBP-1c and involved in impaired insulin secretion in diabetic mice. Cell Metabolism, 2006, 4, 143-154.	16.2	60
54	Determination of the lower threshold of apolipoprotein E resulting in remnant lipoprotein clearance. Journal of Lipid Research, 1999, 40, 1529-1538.	4.2	60

#	Article	IF	CITATIONS
55	Iron homeostasis: a new job for macrophages in adipose tissue?. Trends in Endocrinology and Metabolism, 2015, 26, 101-109.	7.1	59
56	Abscisic acid ameliorates atherosclerosis by suppressing macrophage and CD4+ T cell recruitment into the aortic wall. Journal of Nutritional Biochemistry, 2010, 21, 1178-1185.	4.2	56
57	Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice. Nature Communications, 2022, 13, .	12.8	56
58	Isolation of Adipose Tissue Immune Cells. Journal of Visualized Experiments, 2013, , e50707.	0.3	54
59	Physiological expression of macrophage apoE in the artery wall reduces atherosclerosis in severely hyperlipidemic mice. Journal of Lipid Research, 2002, 43, 1602-1609.	4.2	53
60	Elevating adipose eosinophils in obese mice to physiologically normal levels does not rescue metabolic impairments. Molecular Metabolism, 2018, 8, 86-95.	6.5	50
61	High CD8 T-Cell Receptor Clonality and Altered CDR3 Properties Are Associated With Elevated Isolevuglandins in Adipose Tissue During Diet-Induced Obesity. Diabetes, 2018, 67, 2361-2376.	0.6	49
62	Plasma insulin levels predict atherosclerotic lesion burden in obese hyperlipidemic mice. Atherosclerosis, 2006, 186, 54-64.	0.8	47
63	Recycling of Apolipoprotein E in Mouse Liver. Journal of Biological Chemistry, 1999, 274, 8247-8253.	3.4	45
64	Macrophages are essential for CTGF-mediated adult Î ² -cell proliferation after injury. Molecular Metabolism, 2015, 4, 584-591.	6.5	44
65	CCR2 deficiency leads to increased eosinophils, alternative macrophage activation, and type 2 cytokine expression in adipose tissue. Journal of Leukocyte Biology, 2015, 98, 467-477.	3.3	41
66	Dietary Fish Oil Exerts Hypolipidemic Effects in Lean and Insulin Sensitizing Effects in Obese LDLRâ^'/â^' Mice. Journal of Nutrition, 2009, 139, 2380-2386.	2.9	40
67	Inhibition of Long-Chain Acyl Coenzyme A Synthetases During Fatty Acid Loading Induces Lipotoxicity in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1937-1943.	2.4	40
68	Aberrant Accumulation of Undifferentiated Myeloid Cells in the Adipose Tissue of CCR2-Deficient Mice Delays Improvements in Insulin Sensitivity. Diabetes, 2011, 60, 2820-2829.	0.6	39
69	The Recycling of Apolipoprotein E in Primary Cultures of Mouse Hepatocytes. Journal of Biological Chemistry, 2003, 278, 9412-9417.	3.4	38
70	Absence of macrophage inflammatory protein-1α does not impact macrophage accumulation in adipose tissue of diet-induced obese mice. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E437-E445.	3.5	38
71	Activation of NF-κB drives the enhanced survival of adipose tissue macrophages in an obesogenic environment. Molecular Metabolism, 2015, 4, 665-677.	6.5	38
72	Effects of vitamin E on oxidative stress and atherosclerosis in an obese hyperlipidemic mouse model. Journal of Nutritional Biochemistry, 2007, 18, 127-133.	4.2	37

#	Article	IF	CITATIONS
73	Adipose Tissue is Enriched for Activated and Late-Differentiated CD8+ T Cells and Shows Distinct CD8+ Receptor Usage, Compared With Blood in HIV-Infected Persons. Journal of Acquired Immune Deficiency Syndromes (1999), 2018, 77, e14-e21.	2.1	37
74	Reactive oxygen species–degradable polythioketal urethane foam dressings to promote porcine skin wound repair. Science Translational Medicine, 2022, 14, eabm6586.	12.4	37
75	The recycling of apolipoprotein E in macrophages. Journal of Lipid Research, 2005, 46, 1433-1439.	4.2	34
76	Obesity potentiates development of fatty liver and insulin resistance, but not atherosclerosis, in high-fat diet-fed agouti LDLR-deficient mice. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E492-E499.	3.5	32
77	Hepatocyte-derived ApoE Is More Effective than Non-hepatocyte-derived ApoE in Remnant Lipoprotein Clearance. Journal of Biological Chemistry, 2003, 278, 11670-11675.	3.4	31
78	Contributions of innate type 2 inflammation to adipose function. Journal of Lipid Research, 2019, 60, 1698-1709.	4.2	30
79	Isoform-Specific Effects of Apolipoprotein E on Atherogenesis. Circulation, 2001, 104, 2820-2825.	1.6	29
80	Endoplasmic reticulum stress and hypertension — a new paradigm?. Journal of Clinical Investigation, 2012, 122, 3859-3861.	8.2	29
81	Retention of sedentary obese visceral white adipose tissue phenotype with intermittent physical activity despite reduced adiposity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R594-R602.	1.8	28
82	Obesity Alters B Cell and Macrophage Populations in Brown Adipose Tissue. Obesity, 2017, 25, 1881-1884.	3.0	28
83	Administration of N-Acyl-Phosphatidylethanolamine Expressing Bacteria to Low Density Lipoprotein Receptorâ^'/â^' Mice Improves Indices of Cardiometabolic Disease. Scientific Reports, 2019, 9, 420.	3.3	28
84	Impact of Macrophage Inflammatory Protein-1α Deficiency on Atherosclerotic Lesion Formation, Hepatic Steatosis, and Adipose Tissue Expansion. PLoS ONE, 2012, 7, e31508.	2.5	27
85	Macrophage apolipoprotein A-I expression protects against atherosclerosis in ApoE-Deficient mice and up-regulates ABC transporters. Molecular Therapy, 2003, 8, 576-583.	8.2	26
86	Loss of CCR5 results in glucose intolerance in diet-induced obese mice. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E897-E906.	3.5	26
87	MFe ^{hi} adipose tissue macrophages compensate for tissue iron perturbations in mice. American Journal of Physiology - Cell Physiology, 2018, 315, C319-C329.	4.6	26
88	Persistence of high density lipoprotein particles in obese mice lacking apolipoprotein A-I. Journal of Lipid Research, 2005, 46, 2007-2014.	4.2	25
89	Deletion of the Gene Encoding the Ubiquitously Expressed Glucose-6-phosphatase Catalytic Subunit-related Protein (UGRP)/Glucose-6-phosphatase Catalytic Subunit-1² Results in Lowered Plasma Cholesterol and Elevated Glucagon. Journal of Biological Chemistry, 2006, 281, 39982-39989.	3.4	21
90	Obesity-induced reduction of adipose eosinophils is reversed with low-calorie dietary intervention. Physiological Reports, 2018, 6, e13919.	1.7	21

#	Article	IF	CITATIONS
91	Regulation of S100B in white adipose tissue by obesity in mice. Adipocyte, 2014, 3, 215-220.	2.8	20
92	Striatal Dopamine Homeostasis is Altered in Mice Following Roux-en-Y Gastric Bypass Surgery. ACS Chemical Neuroscience, 2014, 5, 943-951.	3.5	18
93	Exercise and Adipose Tissue Immunity: Outrunning Inflammation. Obesity, 2021, 29, 790-801.	3.0	18
94	Haematopoietic leptin receptor deficiency does not affect macrophage accumulation in adipose tissue or systemic insulin sensitivity. Journal of Endocrinology, 2012, 212, 343-351.	2.6	17
95	Obesity causes very low density lipoprotein clearance defects in low-density lipoprotein receptor-deficient mice. Journal of Nutritional Biochemistry, 2007, 18, 727-735.	4.2	16
96	Palmitate induces apoptotic cell death and inflammasome activation in human placental macrophages. Placenta, 2020, 90, 45-51.	1.5	16
97	Single-cell analysis shows that adipose tissue of persons with both HIV and diabetes is enriched for clonal, cytotoxic, and CMV-specific CD4+ TÂcells. Cell Reports Medicine, 2021, 2, 100205.	6.5	16
98	Macrophage-derived apolipoprotein E ameliorates dyslipidemia and atherosclerosis in obese apolipoprotein E-deficient mice. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E284-E290.	3.5	15
99	Intracellular trafficking of recycling apolipoprotein E in Chinese hamster ovary cells. Journal of Lipid Research, 2006, 47, 1176-1186.	4.2	14
100	Physiological relevance of apolipoprotein E recycling: studies in primary mouse hepatocytes. Metabolism: Clinical and Experimental, 2005, 54, 1309-1315.	3.4	11
101	Lipid and Phospholipid Profiling of Biological Samples Using MALDI Fourier Transform Mass Spectrometry. Lipids, 2009, 44, 367-371.	1.7	11
102	Liver X Receptor α-Dependent Iron Handling in M2 Macrophages. Circulation Research, 2013, 113, 1182-1185.	4.5	11
103	Myeloid-specific deletion of ferroportin impairs macrophage bioenergetics but is disconnected from systemic insulin action in adult mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E376-E391.	3.5	11
104	The role of macrophage leptin receptor in aortic root lesion formation. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E488-E495.	3.5	10
105	Extrinsic and Intrinsic Immunometabolism Converge: Perspectives on Future Research and Therapeutic Development for Obesity. Current Obesity Reports, 2019, 8, 210-219.	8.4	10
106	Quantitation and cellular localization of 11β-HSD1 expression in murine thymus. Journal of Steroid Biochemistry and Molecular Biology, 2006, 99, 93-99.	2.5	9
107	Weight Cycling Impairs Pancreatic Insulin Secretion but Does Not Perturb Whole-Body Insulin Action in Mice With Diet-Induced Obesity. Diabetes, 2022, 71, 2313-2330.	0.6	9
108	An Iron Refractory Phenotype in Obese Adipose Tissue Macrophages Leads to Adipocyte Iron Overload. International Journal of Molecular Sciences, 2022, 23, 7417.	4.1	8

#	Article	IF	CITATIONS
109	Atherosclerotic lesion formation and triglyceride storage in obese apolipoprotein Al-deficient mice. Journal of Nutritional Biochemistry, 2008, 19, 664-673.	4.2	7
110	CC-chemokine receptor 7 (CCR7) deficiency alters adipose tissue leukocyte populations in mice. Physiological Reports, 2016, 4, e12971.	1.7	7
111	Fat and Iron Don't Mix. Immunometabolism, 2020, 2, .	1.6	6
112	A possible secondary immune response in adipose tissue during weight cycling. Adipocyte, 2014, 3, 141-145.	2.8	5
113	What Have We Really Learned About Macrophage Recruitment to Adipose Tissue?. Endocrinology, 2014, 155, 12-14.	2.8	4
114	Links between Immunologic Memory and Metabolic Cycling. Journal of Immunology, 2018, 200, 3681-3689.	0.8	4
115	Title is missing!. Diabetes, 2012, 61, 1302-1304.	0.6	1
116	Fat-water MRI of a diet-induced obesity mouse model at 15.2T. Journal of Medical Imaging, 2016, 3, 026002.	1.5	1
117	Impaired insulin signaling in the B10.D2- <i>Hc⁰H2^dH2</i> - <i>T18^c</i> /oSnJ mouse model of complement factor 5 deficiency. American Journal of Physiology - Endocrinology and Metabolism, 2019. 317. E200-E211.	3.5	1
118	Voluntary exercise augments gene transcription associated with futile cycling in white adipocytes from lean and obese mice. FASEB Journal, 2021, 35, .	0.5	1
119	Leptin Promotes Greater Ki67 Expression in CD4+ T Cells From Obese Compared to Lean Persons Living With HIV. Frontiers in Immunology, 2021, 12, 796898.	4.8	1
120	Fat-water MRI is sensitive to local adipose tissue inflammatory changes in a diet-induced obesity mouse model at 15T. Proceedings of SPIE, 2015, , .	0.8	0
121	Fish Oil Improves White Adipose Tissue Function And Protects Against Atherosclerosis. FASEB Journal, 2006, 20, A950.	0.5	0