
Cecilia Lindestam Arlehamn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1102115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptional analysis of peripheral memory T cells reveals Parkinson's disease-specific gene signatures. Npj Parkinson's Disease, 2022, 8, 30.	5.3	20
2	CD4 TÂcells are rapidly depleted from tuberculosis granulomas following acute SIV co-infection. Cell Reports, 2022, 39, 110896.	6.4	15
3	Central and Peripheral Inflammation: Connecting the Immune Responses of Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S129-S136.	2.8	9
4	Immunodominant MHC-II (Major Histocompatibility Complex II) Restricted Epitopes in Human Apolipoprotein B. Circulation Research, 2022, 131, 258-276.	4.5	8
5	Mycobacterium tuberculosis-specific CD4 T cells expressing CD153 inversely associate with bacterial load and disease severity in human tuberculosis. Mucosal Immunology, 2021, 14, 491-499.	6.0	33
6	Inflammation in Experimental Models of α <scp>‧ynucleinopathies</scp> . Movement Disorders, 2021, 36, 37-49.	3.9	24
7	PD-1 blockade exacerbates <i>Mycobacterium tuberculosis</i> infection in rhesus macaques. Science Immunology, 2021, 6, .	11.9	70
8	MTBVAC vaccination protects rhesus macaques against aerosol challenge with M. tuberculosis and induces immune signatures analogous to those observed in clinical studies. Npj Vaccines, 2021, 6, 4.	6.0	23
9	Functional Analysis of Immune Signature Genes in Th1* Memory Cells Links ISOC1 and Pyrimidine Metabolism to IFN-Î3 and IL-17 Production. Journal of Immunology, 2021, 206, 1181-1193.	0.8	8
10	Classical CD4 T cells as the cornerstone of antimycobacterial immunity. Immunological Reviews, 2021, 301, 10-29.	6.0	35
11	The role of immune-mediated alterations and disorders in ALS disease. Human Immunology, 2021, 82, 155-161.	2.4	17
12	Safety and immunogenicity of the adjunct therapeutic vaccine ID93â€^+â€^GLA-SE in adults who have completed treatment for tuberculosis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Respiratory Medicine,the, 2021, 9, 373-386.	10.7	46
13	Multimodally profiling memory T cells from a tuberculosis cohort identifies cell state associations with demographics, environment and disease. Nature Immunology, 2021, 22, 781-793.	14.5	52
14	Tissue-resident-like CD4+ T cells secreting IL-17 control Mycobacterium tuberculosis in the human lung. Journal of Clinical Investigation, 2021, 131, .	8.2	51
15	Functional inactivation of pulmonary MAIT cells following 5-OP-RU treatment of non-human primates. Mucosal Immunology, 2021, 14, 1055-1066.	6.0	23
16	Relationship of SARS-CoV-2–specific CD4 response to COVID-19 severity and impact of HIV-1 and tuberculosis coinfection. Journal of Clinical Investigation, 2021, 131, .	8.2	113
17	HLA-DR Marks Recently Divided Antigen-Specific Effector CD4 T Cells in Active Tuberculosis Patients. Journal of Immunology, 2021, 207, 523-533.	0.8	33
18	Profiling Human Cytomegalovirus-Specific T Cell Responses Reveals Novel Immunogenic Open Reading Frames. Journal of Virology, 2021, 95, e0094021.	3.4	9

#	Article	IF	CITATIONS
19	Virus-specific T cells for adenovirus infection after stem cell transplantation are highly effective and class II HLA restricted. Blood Advances, 2021, 5, 3309-3321.	5.2	26
20	Distinct blood transcriptomic signature of treatment in latent tuberculosis infected individuals at risk of developing active disease. Tuberculosis, 2021, 131, 102127.	1.9	13
21	The TCR repertoire of α-synuclein-specific T cells in Parkinson's disease is surprisingly diverse. Scientific Reports, 2021, 11, 302.	3.3	26
22	Risk assessment of latent tuberculosis infection through a multiplexed cytokine biosensor assay and machine learning feature selection. Scientific Reports, 2021, 11, 20544.	3.3	20
23	A Mycobacterium tuberculosis-specific subunit vaccine that provides synergistic immunity upon co-administration with Bacillus Calmette-Guérin. Nature Communications, 2021, 12, 6658.	12.8	35
24	100Âyears of the Bacillus Calmette-Guérin vaccine. Vaccine, 2021, 39, 7221-7222.	3.8	9
25	Editorial: Exploring Immune Variability in Susceptibility to Tuberculosis Infection in Humans. Frontiers in Immunology, 2021, 12, 830920.	4.8	1
26	CD4+CCR6+ T cells dominate the BCG-induced transcriptional signature. EBioMedicine, 2021, 74, 103746.	6.1	11
27	Limited recognition of Mycobacterium tuberculosis-infected macrophages by polyclonal CD4 and CD8 T cells from the lungs of infected mice. Mucosal Immunology, 2020, 13, 140-148.	6.0	40
28	Transient Immune Activation in BCG-Vaccinated Infant Rhesus Macaques Is Not Sufficient to Influence Oral Simian Immunodeficiency Virus Infection. Journal of Infectious Diseases, 2020, 222, 44-53.	4.0	10
29	T Cell Responses to Neural Autoantigens Are Similar in Alzheimer's Disease Patients and Age-Matched Healthy Controls. Frontiers in Neuroscience, 2020, 14, 874.	2.8	15
30	Lack of evidence for BCG vaccine protection from severe COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25203-25204.	7.1	46
31	Is mapping the BCG vaccineâ€induced immune responses the key to improving the efficacy against tuberculosis?. Journal of Internal Medicine, 2020, 288, 651-660.	6.0	11
32	Disease extent and antiâ€ŧubercular treatment response correlates with <i>Mycobacterium tuberculosis</i> â€specific CD4 Tâ€cell phenotype regardless of HIVâ€1 status. Clinical and Translational Immunology, 2020, 9, e1176.	3.8	37
33	The Challenge of Distinguishing Cell–Cell Complexes from Singlet Cells in Nonâ€Imaging Flow Cytometry and Singleâ€Cell Sorting. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 1127-1135.	1.5	25
34	Characterization of Proinsulin T Cell Epitopes Restricted by Type 1 Diabetes–Associated HLA Class II Molecules. Journal of Immunology, 2020, 204, 2349-2359.	0.8	13
35	α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson's disease. Nature Communications, 2020, 11, 1875.	12.8	239
36	Quantitative and Qualitative Perturbations of CD8+ MAITs in Healthy <i>Mycobacterium tuberculosis</i> –Infected Individuals. ImmunoHorizons, 2020, 4, 292-307.	1.8	21

#	Article	IF	CITATIONS
37	Proteome-Wide Zika Virus CD4 T Cell Epitope and HLA Restriction Determination. ImmunoHorizons, 2020, 4, 444-453.	1.8	8
38	Roles for the adaptive immune system in Parkinson's and Alzheimer's diseases. Current Opinion in Immunology, 2019, 59, 115-120.	5.5	38
39	Anti-HIV potency of T-cell responses elicited by dendritic cell therapeutic vaccination. PLoS Pathogens, 2019, 15, e1008011.	4.7	25
40	Nontuberculous Mycobacteria and Heterologous Immunity to Tuberculosis. Journal of Infectious Diseases, 2019, 220, 1091-1098.	4.0	19
41	Widespread Tau-Specific CD4 T Cell Reactivity in the General Population. Journal of Immunology, 2019, 203, 84-92.	0.8	36
42	Autoimmunity in Parkinson's Disease: The Role of α-Synuclein-Specific T Cells. Frontiers in Immunology, 2019, 10, 303.	4.8	120
43	Recurrent group A <i>Streptococcus</i> tonsillitis is an immunosusceptibility disease involving antibody deficiency and aberrant T _{FH} cells. Science Translational Medicine, 2019, 11, .	12.4	90
44	Host Transcriptomics as a Tool to Identify Diagnostic and Mechanistic Immune Signatures of Tuberculosis. Frontiers in Immunology, 2019, 10, 221.	4.8	31
45	Circulating T cell-monocyte complexes are markers of immune perturbations. ELife, 2019, 8, .	6.0	67
46	DAFi: A directed recursive data filtering and clustering approach for improving and interpreting data clustering identification of cell populations from polychromatic flow cytometry data. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 597-610.	1.5	18
47	Large-Scale Epitope Identification Screen and Its Potential Application to the Study of Alopecia Areata. Journal of Investigative Dermatology Symposium Proceedings, 2018, 19, S54-S56.	0.8	2
48	Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 714 adults from Colombo, Sri Lanka. Human Immunology, 2018, 79, 87-88.	2.4	7
49	Transcriptomic Analysis of CD4+ T Cells Reveals Novel Immune Signatures of Latent Tuberculosis. Journal of Immunology, 2018, 200, 3283-3290.	0.8	43
50	The SysteMHC Atlas project. Nucleic Acids Research, 2018, 46, D1237-D1247.	14.5	119
51	Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 159 individuals from the Worcester region of the Western Cape province of South Africa. Human Immunology, 2018, 79, 143-144.	2.4	7
52	A High Throughput Whole Blood Assay for Analysis of Multiple Antigen-Specific T Cell Responses in Human <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2018, 200, 3008-3019.	0.8	11
53	Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 339 adults from Managua, Nicaragua. Human Immunology, 2018, 79, 1-2.	2.4	8
54	Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23. Science Immunology, 2018, 3, .	11.9	152

#	Article	IF	CITATIONS
55	A Review on T Cell Epitopes Identified Using Prediction and Cell-Mediated Immune Models for Mycobacterium tuberculosis and Bordetella pertussis. Frontiers in Immunology, 2018, 9, 2778.	4.8	41
56	Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 496 adults from San Diego, California, USA. Human Immunology, 2018, 79, 821-822.	2.4	10
57	Microbiota epitope similarity either dampens or enhances the immunogenicity of disease-associated antigenic epitopes. PLoS ONE, 2018, 13, e0196551.	2.5	31
58	Can we predict tuberculosis cure? What tools are available?. European Respiratory Journal, 2018, 52, 1801089.	6.7	73
59	Limited Pulmonary Mucosal-Associated Invariant T Cell Accumulation and Activation during Mycobacterium tuberculosis Infection in Rhesus Macaques. Infection and Immunity, 2018, 86, .	2.2	34
60	Host resistance to pulmonary Mycobacterium tuberculosis infection requires CD153 expression. Nature Microbiology, 2018, 3, 1198-1205.	13.3	48
61	Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nature Immunology, 2018, 19, 973-985.	14.5	96
62	Identification of Mycobacterial Ribosomal Proteins as Targets for CD4 ⁺ T Cells That Enhance Protective Immunity in Tuberculosis. Infection and Immunity, 2018, 86, .	2.2	7
63	An Integrated Workflow To Assess Technical and Biological Variability of Cell Population Frequencies in Human Peripheral Blood by Flow Cytometry. Journal of Immunology, 2017, 198, 1748-1758.	0.8	69
64	Identification of Mycobacterial RpIJ/L10 and RpsA/S1 Proteins as Novel Targets for CD4 ⁺ T Cells. Infection and Immunity, 2017, 85, .	2.2	13
65	Antigen Availability Shapes T Cell Differentiation and Function during Tuberculosis. Cell Host and Microbe, 2017, 21, 695-706.e5.	11.0	164
66	T cells from patients with Parkinson's disease recognize α-synuclein peptides. Nature, 2017, 546, 656-661.	27.8	618
67	Identifying specificity groups in the T cell receptor repertoire. Nature, 2017, 547, 94-98.	27.8	825
68	Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 100 Luo infants from the Boro area of Nyanza Province, Kenya. Human Immunology, 2017, 78, 325-326.	2.4	6
69	Differential Recognition of <i>Mycobacterium tuberculosis</i> –Specific Epitopes as a Function of Tuberculosis Disease History. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 772-781.	5.6	39
70	Experimental validation of the RATE tool for inferring HLA restrictions of T cell epitopes. BMC Immunology, 2017, 18, 20.	2.2	17
71	Definition of Human Epitopes Recognized in Tetanus Toxoid and Development of an Assay Strategy to Detect Ex Vivo Tetanus CD4+ T Cell Responses. PLoS ONE, 2017, 12, e0169086.	2.5	60
72	Th1 versus Th2 T cell polarization by whole-cell and acellular childhood pertussis vaccines persists upon re-immunization in adolescence and adulthood. Cellular Immunology, 2016, 304-305, 35-43.	3.0	83

#	Article	IF	CITATIONS
73	HIV Interferes with Mycobacterium tuberculosis Antigen Presentation in Human Dendritic Cells. American Journal of Pathology, 2016, 186, 3083-3093.	3.8	15
74	A Cytokine-Independent Approach To Identify Antigen-Specific Human Germinal Center T Follicular Helper Cells and Rare Antigen-Specific CD4+ T Cells in Blood. Journal of Immunology, 2016, 197, 983-993.	0.8	215
75	A Quantitative Analysis of Complexity of Human Pathogen-Specific CD4 T Cell Responses in Healthy M. tuberculosis Infected South Africans. PLoS Pathogens, 2016, 12, e1005760.	4.7	128
76	Automatic Generation of Validated Specific Epitope Sets. Journal of Immunology Research, 2015, 2015, 1-11.	2.2	90
77	Immunological consequences of intragenus conservation of <i>Mycobacterium tuberculosis</i> T-cell epitopes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E147-55.	7.1	69
78	A side-by-side comparison of T cell reactivity to fifty-nine Mycobacterium tuberculosis antigens in diverse populations from five continents. Tuberculosis, 2015, 95, 713-721.	1.9	35
79	Impairment of immunity to <i>Candida</i> and <i>Mycobacterium</i> in humans with bi-allelic <i>RORC</i> mutations. Science, 2015, 349, 606-613.	12.6	366
80	Development and validation of a broad scheme for prediction of HLA class II restricted T cell epitopes. Journal of Immunological Methods, 2015, 422, 28-34.	1.4	171
81	A Population Response Analysis Approach To Assign Class II HLA-Epitope Restrictions. Journal of Immunology, 2015, 194, 6164-6176.	0.8	51
82	The TB-specific CD4+ T cell immune repertoire in both cynomolgus and rhesus macaques largely overlap with humans. Tuberculosis, 2015, 95, 722-735.	1.9	39
83	An open-source computational and data resource to analyze digital maps of immunopeptidomes. ELife, 2015, 4, .	6.0	107
84	Definition of CD4 Immunosignatures Associated with MTB. Frontiers in Immunology, 2014, 5, 124.	4.8	18
85	The interplay of sequence conservation and T cell immune recognition. , 2014, , .		2
86	Antigens for CD4 and CD8 T Cells in Tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a018465-a018465.	6.2	64
87	Brucella melitensis T Cell Epitope Recognition in Humans with Brucellosis in Peru. Infection and Immunity, 2014, 82, 124-131.	2.2	4
88	Transcriptional Profile of Tuberculosis Antigen–Specific T Cells Reveals Novel Multifunctional Features. Journal of Immunology, 2014, 193, 2931-2940.	0.8	91
89	A strategy to determine HLA class II restriction broadly covering the DR, DP, and DQ allelic variants most commonly expressed in the general population. Immunogenetics, 2013, 65, 357-370.	2.4	77
90	Human Circulating PD-1+CXCR3â^'CXCR5+ Memory Tfh Cells Are Highly Functional and Correlate with Broadly Neutralizing HIV Antibody Responses. Immunity, 2013, 39, 758-769.	14.3	790

#	Article	IF	CITATIONS
91	Memory T Cells in Latent Mycobacterium tuberculosis Infection Are Directed against Three Antigenic Islands and Largely Contained in a CXCR3+CCR6+ Th1 Subset. PLoS Pathogens, 2013, 9, e1003130.	4.7	258
92	Previously undescribed grass pollen antigens are the major inducers of T helper 2 cytokine-producing T cells in allergic individuals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3459-3464.	7.1	88
93	Dissecting Mechanisms of Immunodominance to the Common Tuberculosis Antigens ESAT-6, CFP10, Rv2031c (hspX), Rv2654c (TB7.7), and Rv1038c (EsxJ). Journal of Immunology, 2012, 188, 5020-5031.	0.8	95
94	Expression and Regulation of the Escherichia coli O157:H7 Effector Proteins NleH1 and NleH2. PLoS ONE, 2012, 7, e33408.	2.5	12
95	Pseudomonas aeruginosa pilin activates the inflammasome. Cellular Microbiology, 2011, 13, 388-401.	2.1	55
96	Human CD8 ⁺ and CD4 ⁺ T Cell Memory to Lymphocytic Choriomeningitis Virus Infection. Journal of Virology, 2011, 85, 11770-11780.	3.4	15
97	The Role of Potassium in Inflammasome Activation by Bacteria. Journal of Biological Chemistry, 2010, 285, 10508-10518.	3.4	87