
David Nash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11016286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cold-formed steel sections with web openings subjected to web crippling under two-flange loading conditions—part I: Tests and finite element analysis. Thin-Walled Structures, 2012, 56, 38-48.	5.3	93
2	Web crippling behaviour of cold-formed steel channel sections with offset web holes subjected to interior-two-flange loading. Thin-Walled Structures, 2012, 50, 76-86.	5.3	80
3	Effect of web holes on web crippling strength of cold-formed steel channel sections under end-one-flange loading condition – Part I: Tests and finite element analysis. Thin-Walled Structures, 2016, 107, 443-452.	5.3	66
4	Cold-formed steel sections with web openings subjected to web crippling under two-flange loading conditions—Part II: Parametric study and proposed design equations. Thin-Walled Structures, 2012, 56, 79-87.	5.3	64
5	Effect of offset web holes on web crippling strength of cold-formed steel channel sections under end-two-flange loading condition. Thin-Walled Structures, 2013, 65, 34-48.	5.3	59
6	Effects of edge-stiffened web openings on the behaviour of cold-formed steel channel sections under compression. Thin-Walled Structures, 2019, 144, 106307.	5.3	53
7	Web crippling behaviour of cold-formed steel channel sections with edge-stiffened and unstiffened circular holes under interior-two-flange loading condition. Thin-Walled Structures, 2020, 154, 106813.	5.3	52
8	Cold-formed steel channel sections under end-two-flange loading condition: Design for edge-stiffened holes, unstiffened holes and plain webs. Thin-Walled Structures, 2020, 147, 106532.	5.3	51
9	Web crippling behaviour of cold-formed steel channel sections with web holes subjected to interior-one-flange loading condition-Part I: Experimental and numerical investigation. Thin-Walled Structures, 2017, 111, 103-112.	5.3	49
10	Effect of web holes on web crippling strength of cold-formed steel channel sections under end-one-flange loading condition - Part II: Parametric study and proposed design equations. Thin-Walled Structures, 2016, 107, 489-501.	5.3	44
11	Web crippling behaviour of cold-formed steel channel sections with web holes subjected to interior-one-flange loading condition – Part II: parametric study and proposed design equations. Thin-Walled Structures, 2017, 114, 92-106.	5.3	38
12	Effects of edge-stiffened circular holes on the web crippling strength of cold-formed steel channel sections under one-flange loading conditions. Engineering Structures, 2017, 139, 96-107.	5.3	31
13	A Staged Approach to Erosion Analysis of Wind Turbine Blade Coatings. Coatings, 2021, 11, 681.	2.6	6
14	Design of Top-hat Purlins for Cold-formed Steel Portal Frames. Structures, 2016, 7, 113-125.	3.6	5
15	Analysing The Cross-Section of The Abdominal Aortic Aneurysm Neck and Its Effects on Stent Deployment. Scientific Reports, 2020, 10, 4673.	3.3	5
16	Efficiently Simulating an Endograft Deployment: A Methodology for Detailed CFD Analyses. Annals of Biomedical Engineering, 2020, 48, 2449-2465.	2.5	4
17	A Methodology to Quantify the Geometrical Complexity of the Abdominal Aortic Aneurysm. Scientific Reports, 2019, 9, 17379.	3.3	3
18	Evaluation of a New Approach for Modeling Full Ring Stent Bundles with the Inclusion of Manufacturing Strains. Annals of Biomedical Engineering, 2020, 48, 144-156.	2.5	3

#	Article	IF	CITATIONS
19	Deformed gap space using macroâ€micro FEA model and transferred into a CFD model. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 421-422.	0.2	1