
Sally Temple

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1101616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells. Science, 2004, 304, 1338-1340.	12.6	1,403
2	The development of neural stem cells. Nature, 2001, 414, 112-117.	27.8	1,389
3	Adult SVZ Stem Cells Lie in a Vascular Niche: A Quantitative Analysis of Niche Cell-Cell Interactions. Cell Stem Cell, 2008, 3, 289-300.	11.1	944
4	A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature, 1994, 372, 263-266.	27.8	548
5	The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neuroscience, 2006, 9, 743-751.	14.8	540
6	Neural Stem Cells: Generating and Regenerating the Brain. Neuron, 2013, 80, 588-601.	8.1	479
7	Adult SVZ Lineage Cells Home to and Leave the Vascular Niche via Differential Responses to SDF1/CXCR4 Signaling. Cell Stem Cell, 2010, 7, 163-173.	11.1	344
8	Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development (Cambridge), 2002, 129, 4843-4853.	2.5	310
9	Adult Human RPE Can Be Activated into a Multipotent Stem Cell that Produces Mesenchymal Derivatives. Cell Stem Cell, 2012, 10, 88-95.	11.1	233
10	It Takes a Village: Constructing the Neurogenic Niche. Developmental Cell, 2015, 32, 435-446.	7.0	180
11	VCAM1 Is Essential to Maintain the Structure of the SVZ Niche and Acts as an Environmental Sensor to Regulate SVZ Lineage Progression. Cell Stem Cell, 2012, 11, 220-230.	11.1	175
12	CORTECON: A Temporal Transcriptome Analysis of InÂVitro Human Cerebral Cortex Development from Human Embryonic Stem Cells. Neuron, 2014, 83, 51-68.	8.1	172
13	Automated Cell Lineage Construction: A Rapid Method to Analyze Clonal Development Established with Murine Neural Progenitor Cells. Cell Cycle, 2006, 5, 327-335.	2.6	155
14	A Systematic Approach to Identify Candidate Transcription Factors that Control Cell Identity. Stem Cell Reports, 2015, 5, 763-775.	4.8	148
15	Human RPE Stem Cells Grown into Polarized RPE Monolayers on a Polyester Matrix Are Maintained after Grafting into Rabbit Subretinal Space. Stem Cell Reports, 2014, 2, 64-77.	4.8	145
16	Nicotinamide Ameliorates Disease Phenotypes in a Human iPSC Model of Age-Related Macular Degeneration. Cell Stem Cell, 2017, 20, 635-647.e7.	11.1	135
17	Stem cells in the developing and adult nervous system. Journal of Neurobiology, 1998, 36, 105-110.	3.6	131
18	Regenerating Eye Tissues to Preserve and Restore Vision. Cell Stem Cell, 2018, 22, 834-849.	11.1	131

#	Article	lF	CITATIONS
19	Small-molecule–directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10950-10955.	7.1	114
20	Attomole quantification and global profile of RNA modifications: Epitranscriptome of human neural stem cells. Nucleic Acids Research, 2016, 44, e26-e26.	14.5	112
21	Stem cell plasticity — building the brain of our dreams. Nature Reviews Neuroscience, 2001, 2, 513-520.	10.2	99
22	Human iPSC-Derived Neuronal Model of Tau-A152T Frontotemporal Dementia Reveals Tau-Mediated Mechanisms of Neuronal Vulnerability. Stem Cell Reports, 2016, 7, 325-340.	4.8	92
23	Asymmetric Segregation of the Double-Stranded RNA Binding Protein Staufen2 during Mammalian Neural Stem Cell Divisions Promotes Lineage Progression. Cell Stem Cell, 2012, 11, 505-516.	11.1	90
24	In Pursuit of Authenticity: Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium for Clinical Applications. Stem Cells Translational Medicine, 2016, 5, 1562-1574.	3.3	83
25	Solving neurodegeneration: common mechanisms and strategies for new treatments. Molecular Neurodegeneration, 2022, 17, 23.	10.8	83
26	Spred1, a negative regulator of Ras–MAPK–ERK, is enriched in CNS germinal zones, dampens NSC proliferation, and maintains ventricular zone structure. Genes and Development, 2010, 24, 45-56.	5.9	79
27	The Culture and Maintenance of Functional Retinal Pigment Epithelial Monolayers from Adult Human Eye. Methods in Molecular Biology, 2012, 945, 45-65.	0.9	78
28	Human Retinal Pigment Epithelium Cell Changes and Expression of αB-Crystallin. JAMA Ophthalmology, 2007, 125, 641.	2.4	76
29	ELAVL4, splicing, and glutamatergic dysfunction precede neuron loss in MAPT mutation cerebral organoids. Cell, 2021, 184, 4547-4563.e17.	28.9	73
30	Human Adult Retinal Pigment Epithelial Stem Cell–Derived RPE Monolayers Exhibit Key Physiological Characteristics of Native Tissue. , 2015, 56, 7085.		65
31	A Comprehensive Resource for Induced Pluripotent Stem Cells from Patients with Primary Tauopathies. Stem Cell Reports, 2019, 13, 939-955.	4.8	62
32	Molecular Characterisation of Transport Mechanisms at the Developing Mouse Blood–CSF Interface: A Transcriptome Approach. PLoS ONE, 2012, 7, e33554.	2.5	61
33	The Incredible Elastic Brain: How Neural Stem Cells Expand Our Minds. Neuron, 2008, 60, 420-429.	8.1	59
34	Vertebrate neural stem cell segmentation, tracking and lineaging with validation and editing. Nature Protocols, 2011, 6, 1942-1952.	12.0	58
35	Chronic oxidative stress upregulates Drusen-related protein expression in adult human RPE stem cell-derived RPE cells: A novel culture model for dry AMD. Aging, 2012, 5, 51-66.	3.1	53
36	The Developmental Stage of Adult Human Stem Cell-Derived Retinal Pigment Epithelium Cells Influences Transplant Efficacy for Vision Rescue. Stem Cell Reports, 2017, 9, 42-49.	4.8	53

#	Article	IF	CITATIONS
37	A Multiplex High-Throughput Gene Expression Assay to Simultaneously Detect Disease and Functional Markers in Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium. Stem Cells Translational Medicine, 2014, 3, 911-922.	3.3	47
38	LEVER: software tools for segmentation, tracking and lineaging of proliferating cells. Bioinformatics, 2016, 32, 3530-3531.	4.1	46
39	Epigenomic and Transcriptomic Changes During Human RPE EMT in a Stem Cell Model of Epiretinal Membrane Pathogenesis and Prevention by Nicotinamide. Stem Cell Reports, 2020, 14, 631-647.	4.8	43
40	Visualization and correction of automated segmentation, tracking and lineaging from 5-D stem cell image sequences. BMC Bioinformatics, 2014, 15, 328.	2.6	40
41	Stem cell therapies for retinal diseases: recapitulating development to replace degenerated cells. Development (Cambridge), 2017, 144, 1368-1381.	2.5	40
42	Non-monotonic Changes in Progenitor Cell Behavior and Gene Expression during Aging of the Adult V-SVZ Neural Stem Cell Niche. Stem Cell Reports, 2017, 9, 1931-1947.	4.8	39
43	Automatic Summarization of Changes in Biological Image Sequences Using Algorithmic Information Theory. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31, 1386-1403.	13.9	38
44	Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells. Stem Cell Reports, 2015, 5, 609-620.	4.8	27
45	Human Retinal Pigment Epithelium Stem Cell (RPESC). Advances in Experimental Medicine and Biology, 2016, 854, 557-562.	1.6	25
46	Lessons Learned from Pioneering Neural Stem Cell Studies. Stem Cell Reports, 2017, 8, 191-193.	4.8	24
47	Epimetronomics: m6A Marks the Tempo of Corticogenesis. Neuron, 2017, 96, 718-720.	8.1	21
48	Staufen2 deficiency leads to impaired response to novelty in mice. Neurobiology of Learning and Memory, 2018, 150, 107-115.	1.9	16
49	Polarized, Cobblestone, Human Retinal Pigment Epithelial Cell Maturation on a Synthetic PEG Matrix. ACS Biomaterials Science and Engineering, 2017, 3, 890-902.	5.2	11
50	Automated Measurement of Cobblestone Morphology for Characterizing Stem Cell Derived Retinal Pigment Epithelial Cell Cultures. Journal of Ocular Pharmacology and Therapeutics, 2016, 32, 331-339.	1.4	10
51	Heterogeneous Expression of SDF1 Retains Actively Proliferating Neural Progenitors in the Capillary Compartment of the Niche. Stem Cell Reports, 2019, 12, 6-13.	4.8	10
52	Identifying Windows of Susceptibility by Temporal Gene Analysis. Scientific Reports, 2019, 9, 2740.	3.3	9
53	High-content image-based analysis and proteomic profiling identifies Tau phosphorylation inhibitors in a human iPSC-derived glutamatergic neuronal model of tauopathy. Scientific Reports, 2021, 11, 17029.	3.3	8
54	Regenerative Medicine: Solution in Sight. Advances in Experimental Medicine and Biology, 2016, 854, 543-548.	1.6	7

#	Article	IF	CITATIONS
55	3D Image Analysis of the Complete Ventricular-Subventricular Zone Stem Cell Niche Reveals Significant Vasculature Changes and Progenitor Deficits in Males Versus Females with Aging. Stem Cell Reports, 2021, 16, 836-850.	4.8	7
56	Embryonic Stem Cell Self-Renewal, Analyzed. Cell, 2003, 115, 247-248.	28.9	6
57	Automatic summarization of changes in image sequences using algorithmic information theory. , 2008, , .		5
58	Cell Type-Specific In Vitro Gene Expression Profiling of Stem Cell-Derived Neural Models. Cells, 2020, 9, 1406.	4.1	5
59	4D imaging analysis of the aging mouse neural stem cell niche reveals a dramatic loss of progenitor cell dynamism regulated by the RHO-ROCK pathway. Stem Cell Reports, 2022, 17, 245-258.	4.8	5
60	Screening and optimization of potential injection vehicles for storage of retinal pigment epithelial stem cell before transplantation. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 76-86.	2.7	4
61	STAU2 binds a complex RNA cargo that changes temporally with production of diverse intermediate progenitor cells during mouse corticogenesis. Development (Cambridge), 2021, 148, .	2.5	4
62	Appetite for Neurogenesis. Developmental Cell, 2017, 42, 207-209.	7.0	3
63	Measuring Process Dynamics and Nuclear Migration for Clones of Neural Progenitor Cells. Lecture Notes in Computer Science, 2016, 9913, 291-305.	1.3	3
64	Stem cells in the developing and adult nervous system. Journal of Neurobiology, 1998, 36, 105-110.	3.6	2
65	Why we need fetal tissue research. Science, 2019, 363, 207-207.	12.6	1