
John A Gebe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11013212/publications.pdf Version: 2024-02-01

IOHN A CERE

#	Article	IF	CITATIONS
1	Hyaluronan synthesis inhibition impairs antigen presentation and delays transplantation rejection. Matrix Biology, 2021, 96, 69-86.	3.6	6
2	Modulation of hyaluronan synthases and involvement of T cell-derived hyaluronan in autoimmune responses to transplanted islets. Matrix Biology Plus, 2021, 9, 100052.	3.5	3
3	A Novel Approach of Identifying Immunodominant Self and Viral Antigen Cross-Reactive T Cells and Defining the Epitopes They Recognize. Frontiers in Immunology, 2018, 9, 2811.	4.8	3
4	Local, Controlled Release In Vivo of Vascular Endothelial Growth Factor Within a Subcutaneous Scaffolded Islet Implant Reduces Early Islet Necrosis and Improves Performance of the Graft. Cell Transplantation, 2018, 27, 531-541.	2.5	22
5	Memory T cells specific to citrullinated α-enolase are enriched in the rheumatic joint. Journal of Autoimmunity, 2018, 92, 47-56.	6.5	43
6	Controlled release of monoclonal antibodies from poly-l-lysine-coated alginate spheres within a scaffolded implant mitigates autoimmune responses to transplanted islets and limits systemic antibody toxicity. Materials Science and Engineering C, 2018, 93, 390-398.	7.3	15
7	Modified High-Molecular-Weight Hyaluronan Promotes Allergen-Specific Immune Tolerance. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 109-120.	2.9	30
8	Genetically modified human <scp>CD</scp> 4 ⁺ T cells can be evaluated <i>inÂvivo</i> without lethal graftâ€versusâ€host disease. Immunology, 2016, 148, 339-351.	4.4	9
9	Structural and Nonstructural Viral Proteins Are Targets of T-Helper Immune Response against Human Respiratory Syncytial Virus. Molecular and Cellular Proteomics, 2016, 15, 2141-2151.	3.8	10
10	Inhibition of hyaluronan synthesis restores immune tolerance during autoimmune insulitis. Journal of Clinical Investigation, 2015, 125, 3928-3940.	8.2	76
11	Citrulline‧pecific Th1 Cells Are Increased in Rheumatoid Arthritis and Their Frequency Is Influenced by Disease Duration and Therapy. Arthritis and Rheumatology, 2014, 66, 1712-1722.	5.6	168
12	Antigen-specific immunomodulation for type 1 diabetes by novel recombinant antibodies directed against diabetes-associates auto-reactive T cell epitope. Journal of Autoimmunity, 2013, 47, 83-93.	6.5	14
13	IL-10 Induction from Implants Delivering Pancreatic Islets and Hyaluronan. Journal of Diabetes Research, 2013, 2013, 1-9.	2.3	6
14	Reversal of Diabetes in Mice with a Bioengineered Islet Implant Incorporating a Type I Collagen Hydrogel and Sustained Release of Vascular Endothelial Growth Factor. Cell Transplantation, 2012, 21, 2099-2110.	2.5	36
15	Identification and functional characterization of T cells reactive to citrullinated vimentin in HLA-DRB1*0401-positive humanized mice and rheumatoid arthritis patients. Arthritis and Rheumatism, 2011, 63, 2873-2883.	6.7	128
16	ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7938-7943.	7.1	122
17	Th1 cytokines promote T-cell binding to antigen-presenting cells via enhanced hyaluronan production and accumulation at the immune synapse. Cellular and Molecular Immunology, 2010, 7, 211-220.	10.5	65
18	The Toll-Like Receptor Signaling Molecule Myd88 Contributes to Pancreatic Beta-Cell Homeostasis in Response to Injury. PLoS ONE, 2009, 4, e5063.	2.5	39

Јони А Севе

#	Article	IF	CITATIONS
19	Restricted Autoantigen Recognition Associated with Deletional and Adaptive Regulatory Mechanisms. Journal of Immunology, 2009, 183, 59-65.	0.8	19
20	Searching immunodominant epitopes prior to epidemic: HLA class II-restricted SARS-CoV spike protein epitopes in unexposed individuals. International Immunology, 2009, 21, 63-71.	4.0	31
21	Autoreactive human T-cell receptor initiates insulitis and impaired glucose tolerance in HLA DR4 transgenic mice. Journal of Autoimmunity, 2008, 30, 197-206.	6.5	26
22	Autoreactive T Cells in a Partially Humanized Murine Model of T1D. Annals of the New York Academy of Sciences, 2007, 1103, 69-76.	3.8	5
23	Tracking Antigen Specific CD4+ T-Cells With Soluble MHC Molecules. Methods in Molecular Medicine, 2007, 136, 39-50.	0.8	2
24	Age-dependent loss of tolerance to an immunodominant epitope of glutamic acid decarboxylase in diabetic-prone RIP-B7/DR4 mice. Clinical Immunology, 2006, 121, 294-304.	3.2	14
25	Inhibition of altered peptide ligand-mediated antagonism of human GAD65-responsive CD4+ T?cells by non-antagonizable T?cells. European Journal of Immunology, 2004, 34, 3337-3345.	2.9	13
26	Low-avidity recognition by CD4+ T cells directed to self-antigens. European Journal of Immunology, 2003, 33, 1409-1417.	2.9	62
27	Rapid epitope identification from complex class-II-restricted T-cell antigens. Trends in Immunology, 2001, 22, 583-588.	6.8	52
28	T Cell Selection and Differential Activation on Structurally Related HLA-DR4 Ligands. Journal of Immunology, 2001, 167, 3250-3256.	0.8	20
29	Tetramer-Guided Epitope Mapping: Rapid Identification and Characterization of Immunodominant CD4+ T Cell Epitopes from Complex Antigens. Journal of Immunology, 2001, 166, 6665-6670.	0.8	135
30	Distinct T Cell Interactions with HLA Class II Tetramers Characterize a Spectrum of TCR Affinities in the Human Antigen-Specific T Cell Response. Journal of Immunology, 2000, 165, 6994-6998.	0.8	61
31	HLA-DQ Tetramers Identify Epitope-Specific T Cells in Peripheral Blood of Herpes Simplex Virus Type 2-Infected Individuals: Direct Detection of Immunodominant Antigen-Responsive Cells. Journal of Immunology, 2000, 164, 4244-4249.	0.8	118
32	Molecular Cloning, Mapping to Human Chromosome 1 q21-q23, and Cell Binding Characteristics of Spα, a New Member of the Scavenger Receptor Cysteine-rich (SRCR) Family of Proteins. Journal of Biological Chemistry, 1997, 272, 6151-6158.	3.4	100
33	CD6—ligand interactions: a paradigm for SRCR domain function?. Trends in Immunology, 1997, 18, 498-504.	7.5	136
34	Comparison of hard-cylinder and screened coulomb interactions in the modeling of supercoiled DNAs. Biopolymers, 1997, 42, 455-470.	2.4	25
35	Comparison of hardâ€cylinder and screened coulomb interactions in the modeling of supercoiled DNAs. Biopolymers, 1997, 42, 455-470.	2.4	1
36	Effects of Na+and Mg2+on the Structures of Supercoiled DNAs: Comparison of Simulations with Experiments. Journal of Molecular Biology, 1996, 262, 105-128.	4.2	71

Јони А Севе

#	Article	IF	CITATIONS
37	Thermodynamics of the first transition in writhe of a small circular DNA by Monte Carlo simulation. Biopolymers, 1996, 38, 493-503.	2.4	9
38	Thermodynamics of the first transition in writhe of a small circular DNA by Monte Carlo simulation. Biopolymers, 1996, 38, 493-503.	2.4	8
39	Effect of anisotropy of the bending rigidity on the supercoiling free energy of small circular DNAs. Biopolymers, 1995, 36, 633-641.	2.4	17
40	Intramolecular interference effects in dynamic light scattering from rigid rings. Biopolymers, 1993, 33, 1757-1764.	2.4	5