Seung-Taek Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1101250/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PTK7, a Catalytically Inactive Receptor Tyrosine Kinase, Increases Oncogenic Phenotypes in Xenograft Tumors of Esophageal Squamous Cell Carcinoma KYSE-30 Cells. International Journal of Molecular Sciences, 2022, 23, 2391.	4.1	7
2	SOD3 Suppresses the Expression of MMP-1 and Increases the Integrity of Extracellular Matrix in Fibroblasts. Antioxidants, 2022, 11, 928.	5.1	14
3	Polyamine Oxidase Expression Is Downregulated by 17β-Estradiol via Estrogen Receptor 2 in Human MCF-7 Breast Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 7521.	4.1	3
4	Effects of Tenascin C on the Integrity of Extracellular Matrix and Skin Aging. International Journal of Molecular Sciences, 2020, 21, 8693.	4.1	30
5	The catalytically defective receptor protein tyrosine kinase EphA10 promotes tumorigenesis in pancreatic cancer cells. Cancer Science, 2020, 111, 3292-3302.	3.9	13
6	Novel Associations between Related Proteins and Cellular Effects of High-Density Lipoprotein. Korean Circulation Journal, 2020, 50, 236.	1.9	1
7	Tyrosine 51 residue of the syndecan-2 extracellular domain is involved in the interaction with and activation of pro-matrix metalloproteinase-7. Scientific Reports, 2019, 9, 10625.	3.3	6
8	Catalytically inactive receptor tyrosine kinase PTK7 activates FGFR1 independent of FGF. FASEB Journal, 2019, 33, 12960-12971.	0.5	12
9	Skullcapflavone II Inhibits Degradation of Type I Collagen by Suppressing MMP-1 Transcription in Human Skin Fibroblasts. International Journal of Molecular Sciences, 2019, 20, 2734.	4.1	23
10	Leptin regulates the pro-inflammatory response in human epidermal keratinocytes. Archives of Dermatological Research, 2018, 310, 351-362.	1.9	25
11	Identification of Plasma Membrane Clycoproteins Specific to Human Glioblastoma Multiforme Cells Using Lectin Arrays and LCâ€MS/MS. Proteomics, 2018, 18, 1700302.	2.2	8
12	Biphasic regulation of tumorigenesis by PTK7 expression level in esophageal squamous cell carcinoma. Scientific Reports, 2018, 8, 8519.	3.3	16
13	PTK6 Localized at the Plasma Membrane Promotes Cell Proliferation and MigratiOn Through Phosphorylation of Eps8. Journal of Cellular Biochemistry, 2017, 118, 2887-2895.	2.6	19
14	The associated pyrazolopyrimidines PP1 and PP2 inhibit protein tyrosine kinase 6 activity and suppress breast cancer cell proliferation. Oncology Letters, 2017, 13, 1463-1469.	1.8	12
15	Processing of syndecan-2 by matrix metalloproteinase-14 and effect of its cleavage on VEGF-induced tube formation of HUVECs. Biochemical Journal, 2017, 474, 3719-3732.	3.7	21
16	Syndecan-2 cytoplasmic domain up-regulates matrix metalloproteinase-7 expression via the protein kinase Cγ–mediated FAK/ERK signaling pathway in colon cancer. Journal of Biological Chemistry, 2017, 292, 16321-16332.	3.4	36
17	Integrative analysis for the discovery of lung cancer serological markers and validation by MRM-MS. PLoS ONE, 2017, 12, e0183896.	2.5	19
18	Catalytically defective receptor protein tyrosine kinase PTK7 enhances invasive phenotype by inducing MMP-9 through activation of AP-1 and NF-1°B in esophageal squamous cell carcinoma cells. Oncotarget, 2016, 7, 73242-73256.	1.8	32

#	Article	IF	CITATIONS
19	Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure. Toxicology and Applied Pharmacology, 2016, 310, 185-194.	2.8	22
20	Identification of ganglioside <scp>GM</scp> 2 activator playing a role in cancer cell migration through proteomic analysis of breast cancer secretomes. Cancer Science, 2016, 107, 828-835.	3.9	26
21	Biphasic effect of PTK7 on KDR activity in endothelial cells and angiogenesis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2251-2260.	4.1	19
22	Galangin and Kaempferol Suppress Phorbol-12-Myristate-13-Acetate-Induced Matrix Metalloproteinase-9 Expression in Human Fibrosarcoma HT-1080 Cells. Molecules and Cells, 2015, 38, 151-155.	2.6	27
23	Different Functional and Structural Characteristics between ApoA-I and ApoA-4 in Lipid-Free and Reconstituted HDL State: ApoA-4 Showed Less Anti-Atherogenic Activity. Molecules and Cells, 2015, 38, 573-579.	2.6	12
24	Growth-stimulatory activity of TIMP-2 is mediated through c-Src activation followed by activation of FAK, PI3-kinase/AKT, and ERK1/2 independent of MMP inhibition in lung adenocarcinoma cells. Oncotarget, 2015, 6, 42905-42922.	1.8	22
25	Discovery of Melanotransferrin as a Serological Marker of Colorectal Cancer by Secretome Analysis and Quantitative Proteomics. Journal of Proteome Research, 2014, 13, 4919-4931.	3.7	35
26	Discovery of (E)-5-(benzylideneamino)-1 H -benzo[d]imidazol-2(3 H)-one derivatives as inhibitors for PTK6. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4659-4663.	2.2	13
27	Protein tyrosine kinase 7 plays a tumor suppressor role by inhibiting ERK and AKT phosphorylation in lung cancer. Oncology Reports, 2014, 31, 2708-2712.	2.6	32
28	The Presence of Outer Arm Fucose Residues on the <i>N</i> -Glycans of Tissue Inhibitor of Metalloproteinases-1 Reduces Its Activity. Journal of Proteome Research, 2013, 12, 3547-3560.	3.7	17
29	PTK6 promotes degradation of c-Cbl through PTK6-mediated phosphorylation. Biochemical and Biophysical Research Communications, 2013, 431, 734-739.	2.1	12
30	Oncogenic role of protein tyrosine kinase 7 in esophageal squamous cell carcinoma. Cancer Science, 2013, 104, 1120-1126.	3.9	54
31	Fisetin Inhibits Matrix Metalloproteinases and Reduces Tumor Cell Invasiveness and Endothelial Cell Tube Formation. Nutrition and Cancer, 2013, 65, 1192-1199.	2.0	26
32	The Cytosolic Domain of Protein-tyrosine Kinase 7 (PTK7), Generated from Sequential Cleavage by a Disintegrin and Metalloprotease 17 (ADAM17) and γ-Secretase, Enhances Cell Proliferation and Migration in Colon Cancer Cells. Journal of Biological Chemistry, 2012, 287, 25001-25009.	3.4	56
33	Monitoring of proteolytic enzyme activity using phase transition-based peptide arrays. Biosensors and Bioelectronics, 2012, 36, 147-153.	10.1	11
34	Hsp90 rescues PTK6 from proteasomal degradation in breast cancer cells. Biochemical Journal, 2012, 447, 313-320.	3.7	25
35	Characterization of TAMRA- and biotin-conjugated peptide arrays for on-chip matrix metalloproteinase activity assay. Biochip Journal, 2012, 6, 307-313.	4.9	3
36	Apolipoprotein A-IV is a novel substrate for matrix metalloproteinases. Journal of Biochemistry, 2012, 151, 291-298.	1.7	21

#	Article	IF	CITATIONS
37	Profiling of differentially expressed proteins in stage IV Colorectal cancers with good and poor outcomes. Journal of Proteomics, 2012, 75, 2983-2997.	2.4	46
38	Analysis of apolipoprotein A-I as a substrate for matrix metalloproteinase-14. Biochemical and Biophysical Research Communications, 2011, 409, 58-63.	2.1	14
39	Protein tyrosine kinase 7 has a conserved role in Wnt/β atenin canonical signalling. EMBO Reports, 2011, 12, 43-49.	4.5	93
40	CagA Phosphorylation-Dependent MMP-9 Expression in Gastric Epithelial Cells. Helicobacter, 2011, 16, 276-283.	3.5	13
41	Inhibition of Invasion and Capillary-like Tube Formation by Retrohydroxamate-based MMP Inhibitors. Bulletin of the Korean Chemical Society, 2011, 32, 2032-2038.	1.9	2
42	On-chip assay of matrix metalloproteinase-3 activity using fluorescence-conjugated gelatin arrays. Biochip Journal, 2010, 4, 210-216.	4.9	6
43	PTK6 Inhibits Down-regulation of EGF Receptor through Phosphorylation of ARAP1. Journal of Biological Chemistry, 2010, 285, 26013-26021.	3.4	31
44	Roles of Arrest-Defective Protein 1225 and Hypoxia-Inducible Factor 1α in Tumor Growth and Metastasis. Journal of the National Cancer Institute, 2010, 102, 426-442.	6.3	20
45	The cell polarity PTK7 receptor acts as a modulator of the chemotherapeutic response in acute myeloid leukemia and impairs clinical outcome. Blood, 2010, 116, 2315-2323.	1.4	79
46	Rapid analysis of matrix metalloproteinase-3 activity by gelatin arrays using a spectral surface plasmon resonance biosensor. Analyst, The, 2010, 135, 1050.	3.5	22
47	Oncogenic Functions of PTK6 are Enhanced by Its Targeting to Plasma Membrane But Abolished by Its Targeting to Nucleus. Journal of Biochemistry, 2009, 146, 133-139.	1.7	38
48	Syndecan-2 Functions as a Docking Receptor for Pro-matrix Metalloproteinase-7 in Human Colon Cancer Cells. Journal of Biological Chemistry, 2009, 284, 35692-35701.	3.4	68
49	Identification of S100A8 and S100A9 as Serological Markers for Colorectal Cancer. Journal of Proteome Research, 2009, 8, 1368-1379.	3.7	129
50	Cleavage and functional loss of human apolipoprotein E by digestion of matrix metalloproteinaseâ€14. Proteomics, 2008, 8, 2926-2935.	2.2	23
51	Soluble PTK7 inhibits tube formation, migration, and invasion of endothelial cells and angiogenesis. Biochemical and Biophysical Research Communications, 2008, 371, 793-798.	2.1	70
52	Genetic Variation in the Renin-Angiotensin System and Response to Endurance Training. Medical Principles and Practice, 2007, 16, 142-146.	2.4	13
53	Molecular dissection of the interaction between the SH3 domain and the SH2-Kinase Linker region in PTK6. Biochemical and Biophysical Research Communications, 2007, 362, 829-834.	2.1	17
54	High Level Production of human Protein Tyrosine Kinase-6 in Insect Cells Using Drosophila Peptidoglycan Recognition Protein-LB as a fusion protein. Journal of Life Science, 2007, 17, 179-184.	0.2	0

#	Article	IF	CITATIONS
55	Release of heat shock protein 70 (Hsp70) and the effects of extracellular Hsp70 on matric metalloproteinase-9 expression in human monocytic U937 cells. Experimental and Molecular Medicine, 2006, 38, 364-374.	7.7	50
56	Generation of a novel proform of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein that can be reactivated by matrix metalloproteinases. Experimental Cell Research, 2006, 312, 3892-3898.	2.6	10
57	Apolipoprotein C-II is a novel substrate for matrix metalloproteinases. Biochemical and Biophysical Research Communications, 2006, 339, 47-54.	2.1	44
58	Characterization of plasma gelsolin as a substrate for matrix metalloproteinases. Proteomics, 2006, 6, 1192-1199.	2.2	40
59	Alteration of collapsin response mediator protein-2 expression in focal ischemic rat brain. NeuroReport, 2005, 16, 1647-1653.	1.2	36
60	N-Hydroxy-2-(naphthalene-2-ylsulfanyl)-acetamide, a novel hydroxamic acid-based inhibitor of aminopeptidase N and its anti-angiogenic activity. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 181-183.	2.2	18
61	An Intramolecular Interaction between SH2-Kinase Linker and Kinase Domain Is Essential for the Catalytic Activity of Protein-tyrosine Kinase-6. Journal of Biological Chemistry, 2005, 280, 28973-28980.	3.4	30
62	Proteolytic Cleavage of Extracellular Secreted α-Synuclein via Matrix Metalloproteinases. Journal of Biological Chemistry, 2005, 280, 25216-25224.	3.4	209
63	Solution Structure and Backbone Dynamics of the Non-receptor Protein-tyrosine Kinase-6 Src Homology 2 Domain. Journal of Biological Chemistry, 2004, 279, 29700-29708.	3.4	23
64	A proteomic approach to identify substrates of matrix metalloproteinase-14 in human plasma. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1702, 79-87.	2.3	82
65	Cloning and characterization of the full-length mouse Ptk7 cDNA encoding a defective receptor protein tyrosine kinase. Gene, 2004, 328, 75-84.	2.2	40
66	TIMP-1 inhibits apoptosis in breast carcinoma cells via a pathway involving pertussis toxin-sensitive G protein and c-Src. Biochemical and Biophysical Research Communications, 2003, 312, 1196-1201.	2.1	65
67	An absolute role of the PKC-dependent NF-κB activation for induction of MMP-9 in hepatocellular carcinoma cells. Biochemical and Biophysical Research Communications, 2003, 305, 428-433.	2.1	73
68	Endostatin Blocks Vascular Endothelial Growth Factor-mediated Signaling via Direct Interaction with KDR/Flk-1. Journal of Biological Chemistry, 2002, 277, 27872-27879.	3.4	367
69	Endostatin binds to the catalytic domain of matrix metalloproteinase-2. FEBS Letters, 2002, 519, 147-152.	2.8	94
70	Characterization of the 5′-flanking region of the human PTK6 gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1574, 365-369.	2.4	6
71	Organization of the human PTK7 gene encoding a receptor protein tyrosine kinase-like molecule and alternative splicing of its mRNA. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1579, 153-163.	2.4	31
72	Refolding of the catalytic and hinge domains of human MT1-mMP expressed in Escherichia coli and its characterization. Molecules and Cells, 2002, 13, 118-24.	2.6	19

#	Article	IF	CITATIONS
73	Complete sequence-specific 1H, 13C and 15N resonance assignments of the human PTK6 SH2 domain. Journal of Biomolecular NMR, 2001, 19, 291-292.	2.8	8
74	Analysis of tissue inhibitor of metalloproteinases-2 effect on pro-matrix metalloproteinase-2 activation by membrane-type 1 matrix metalloproteinase using baculovirus/insect-cell expression system. Biochemical Journal, 2000, 345, 511.	3.7	24
75	Analysis of tissue inhibitor of metalloproteinases-2 effect on pro-matrix metalloproteinase-2 activation by membrane-type 1 matrix metalloproteinase using baculovirus/insect-cell expression system. Biochemical Journal, 2000, 345, 511-519.	3.7	66
76	The Fourth Immunoglobulin-like Loop in the Extracellular Domain of FLT-1, a VEGF Receptor, Includes a Major Heparin-Binding Site. Biochemical and Biophysical Research Communications, 1999, 264, 730-734.	2.1	59
77	DNA-based prenatal diagnosis of a Korean family with tyrosinase-related oculocutaneous albinism (OCA1). Japanese Journal of Human Genetics, 1997, 42, 499-505.	0.8	9
78	Hypopigmentation in the Prader-Willi syndrome correlates withP gene deletion but not with haplotype of the hemizygousP allele. , 1997, 71, 57-62.		85
79	Novel mutations of theP gene in type II oculocutaneous albinism (OCA2). Human Mutation, 1997, 10, 175-177.	2.5	37
80	Novel mutations of the P gene in type II oculocutaneous albinism (OCA2). Human Mutation, 1997, 10, 175-177.	2.5	3
81	Mutations of theTyrosinase gene in three Korean patients with Type I oculocutaneous albinism. Japanese Journal of Human Genetics, 1996, 41, 299-305.	0.8	8
82	Organization and sequence of the human P gene and identification of a new family of transport proteins. Genomics, 1995, 26, 354-363.	2.9	200
83	Mutations of the P Gene in Oculocutaneous Albinism, Ocular Albinism, and Prader-Willi Syndrome Plus Albinism. New England Journal of Medicine, 1994, 330, 529-534.	27.0	221
84	A YAC Contig Spanning a Cluster of Human Type III Receptor Protein Tyrosine Kinase Genes (PDGFRA-KIT-KDR) in Chromosome Segment 4q12. Genomics, 1994, 22, 431-436.	2.9	59
85	A gene for the mouse pink-eyed dilution locus and for human type II oculocutaneous albinism. Nature, 1993, 361, 72-76.	27.8	409