Raffaella Rossin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11012302/publications.pdf

Version: 2024-02-01

186265 330143 3,728 35 28 37 citations h-index g-index papers 38 38 38 3916 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Lipophilicity and Click Reactivity Determine the Performance of Bioorthogonal Tetrazine Tools in Pretargeted <i>In Vivo</i> Chemistry. ACS Pharmacology and Translational Science, 2021, 4, 824-833.	4.9	45
2	<i>Trans</i> -Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging. ACS Nano, 2020, 14, 568-584.	14.6	50
3	Bioorthogonal Tetrazine Carbamate Cleavage by Highly Reactive <i>trans</i> ction the American Chemical Society, 2020, 142, 10955-10963.	13.7	58
4	Evaluation of the inverse electron demand Diels-Alder reaction in rats using a scandium-44-labelled tetrazine for pretargeted PET imaging. EJNMMI Research, 2019, 9, 49.	2.5	24
5	HPMA-Based Nanoparticles for Fast, Bioorthogonal iEDDA Ligation. Biomacromolecules, 2019, 20, 3786-3797.	5.4	9
6	Tetrazineâ€" <i>trans</i> -Cyclooctene Chemistry Applied to Fabricate Self-Assembled Fluorescent and Radioactive Nanoparticles for ⟨i⟩in Vivo⟨/i⟩ Dual Mode Imaging. Bioconjugate Chemistry, 2019, 30, 547-551.	3.6	9
7	Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. Nature Communications, 2018, 9, 1484.	12.8	175
8	Clickâ€toâ€Release from trans yclooctenes: Mechanistic Insights and Expansion of Scope from Established Carbamate to Remarkable Ether Cleavage. Angewandte Chemie, 2018, 130, 10654-10659.	2.0	17
9	Clickâ€toâ€Release from <i>trans</i> â€Cyclooctenes: Mechanistic Insights and Expansion of Scope from Established Carbamate to Remarkable Ether Cleavage. Angewandte Chemie - International Edition, 2018, 57, 10494-10499.	13.8	83
10	DOTA-tetrazine probes with modified linkers for tumor pretargeting. Nuclear Medicine and Biology, 2017, 55, 19-26.	0.6	33
11	Metal-Free Cycloaddition Chemistry Driven Pretargeted Radioimmunotherapy Using α-Particle Radiation. Bioconjugate Chemistry, 2017, 28, 3007-3015.	3.6	26
12	A key role for galectinâ€1 in sprouting angiogenesis revealed by novel rationally designed antibodies. International Journal of Cancer, 2016, 139, 824-835.	5.1	21
13	Triggered Drug Release from an Antibody–Drug Conjugate Using Fast "Click-to-Release―Chemistry in Mice. Bioconjugate Chemistry, 2016, 27, 1697-1706.	3.6	169
14	Diabody Pretargeting with Click Chemistry In Vivo. Journal of Nuclear Medicine, 2015, 56, 1422-1428.	5.0	64
15	Pretargeted imaging using bioorthogonal chemistry in mice. Current Opinion in Chemical Biology, 2014, 21, 161-169.	6.1	96
16	<i>Trans</i> -Cyclooctene Tag with Improved Properties for Tumor Pretargeting with the Diels–Alder Reaction. Molecular Pharmaceutics, 2014, 11, 3090-3096.	4.6	93
17	Click to Release: Instantaneous Doxorubicin Elimination upon Tetrazine Ligation. Angewandte Chemie - International Edition, 2013, 52, 14112-14116.	13.8	319
18	Highly Reactive <i>trans</i> -Cyclooctene Tags with Improved Stability for Diels–Alder Chemistry in Living Systems. Bioconjugate Chemistry, 2013, 24, 1210-1217.	3.6	218

#	Article	IF	CITATIONS
19	Diels–Alder Reaction for Tumor Pretargeting: In Vivo Chemistry Can Boost Tumor Radiation Dose Compared with Directly Labeled Antibody. Journal of Nuclear Medicine, 2013, 54, 1989-1995.	5.0	147
20	Characterization of ⁶⁴ Cu-DOTA-Conatumumab: A PET Tracer for In Vivo Imaging of Death Receptor 5. Journal of Nuclear Medicine, 2011, 52, 942-949.	5.0	11
21	Inâ€Vivo Chemistry for Pretargeted Tumor Imaging in Live Mice. Angewandte Chemie - International Edition, 2010, 49, 3375-3378.	13.8	427
22	Molecular Imaging of Atherosclerotic Plaque with ⁶⁴ Cu-Labeled Natriuretic Peptide and PET. Journal of Nuclear Medicine, 2010, 51, 85-91.	5.0	52
23	In Vivo Evaluation of ⁶⁴ Cu-Labeled Magnetic Nanoparticles as a Dual-Modality PET/MR Imaging Agent. Bioconjugate Chemistry, 2010, 21, 715-722.	3.6	195
24	Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 685-690.	7.1	242
25	Folateâ€mediated cell uptake of shellâ€crosslinked spheres and cylinders. Journal of Polymer Science Part A, 2008, 46, 7578-7583.	2.3	74
26	Small Molecule Receptors as Imaging Targets. Handbook of Experimental Pharmacology, 2008, , 93-129.	1.8	8
27	Synthesis and Characterization of Core–Shell Star Copolymers for In Vivo PET Imaging Applications. Biomacromolecules, 2008, 9, 1329-1339.	5.4	147
28	In Vivo Imaging of sup>64 / sup>Cu-Labeled Polymer Nanoparticles Targeted to the Lung Endothelium. Journal of Nuclear Medicine, 2008, 49, 103-111.	5.0	120
29	Facile, Efficient Approach to Accomplish Tunable Chemistries and Variable Biodistributions for Shell Cross-Linked Nanoparticles. Biomacromolecules, 2008, 9, 1997-2006.	5.4	88
30	Small-Animal PET of Tumor Angiogenesis Using a 76Br-Labeled Human Recombinant Antibody Fragment to the ED-B Domain of Fibronectin. Journal of Nuclear Medicine, 2007, 48, 1172-1179.	5.0	56
31	Labeling of Polymer Nanostructures for Medical Imaging:Â Importance of Cross-Linking Extent, Spacer Length, and Charge Density. Macromolecules, 2007, 40, 2971-2973.	4.8	46
32	Structural Effects on the Biodistribution and Positron Emission Tomography (PET) Imaging of Well-Defined ⁶⁴ Cu-Labeled Nanoparticles Comprised of Amphiphilic Block Graft Copolymers. Biomacromolecules, 2007, 8, 3126-3134.	5.4	125
33	MicroPET Imaging of MCF-7 Tumors in Mice via unr mRNA-Targeted Peptide Nucleic Acids. Bioconjugate Chemistry, 2005, 16, 294-305.	3.6	50
34	An Assessment of the Effects of Shell Cross-Linked Nanoparticle Size, Core Composition, and Surface PEGylation on in Vivo Biodistribution. Biomacromolecules, 2005, 6, 2541-2554.	5.4	215
35	64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation. Journal of Nuclear Medicine, 2005, 46, 1210-8.	5. 0	128

3