Kana Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1100853/publications.pdf

Version: 2024-02-01

189	9,809	54	89
papers	citations	h-index	g-index
190	190	190	11846
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Comparison of risk factors for colon and rectal cancer. International Journal of Cancer, 2004, 108, 433-442.	2.3	475
2	Association of Obesity With Risk of Early-Onset Colorectal Cancer Among Women. JAMA Oncology, 2019, 5, 37.	3.4	305
3	Calcium Intake and Risk of Colon Cancer in Women and Men. Journal of the National Cancer Institute, 2002, 94, 437-446.	3.0	302
4	Circulating 25-Hydroxyvitamin D Levels and Survival in Patients With Colorectal Cancer. Journal of Clinical Oncology, 2008, 26, 2984-2991.	0.8	277
5	Rising incidence of early-onset colorectal cancer â€" a call to action. Nature Reviews Clinical Oncology, 2021, 18, 230-243.	12.5	276
6	Association of Dietary Patterns With Risk of Colorectal Cancer Subtypes Classified by <i>Fusobacterium nucleatum</i> in Tumor Tissue. JAMA Oncology, 2017, 3, 921.	3.4	243
7	Aspirin Dose and Duration of Use and Risk of Colorectal Cancer in Men. Gastroenterology, 2008, 134, 21-28.	0.6	224
8	A Nested Case-Control Study of Plasma 25-Hydroxyvitamin D Concentrations and Risk of Colorectal Cancer. Journal of the National Cancer Institute, 2007, 99, 1120-1129.	3.0	213
9	Insulin, the Insulin-Like Growth Factor Axis, and Mortality in Patients With Nonmetastatic Colorectal Cancer. Journal of Clinical Oncology, 2009, 27, 176-185.	0.8	208
10	Plasma and Dietary Carotenoids, and the Risk of Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2004, 13, 260-269.	1.1	178
11	Circulating Levels of Vitamin D and Colon and Rectal Cancer: The Physicians' Health Study and a Meta-analysis of Prospective Studies. Cancer Prevention Research, 2011, 4, 735-743.	0.7	172
12	Long-term Risk of Colorectal Cancer After Removal of Conventional Adenomas and Serrated Polyps. Gastroenterology, 2020, 158, 852-861.e4.	0.6	153
13	Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nature Communications, 2015, 6, 7138.	5.8	138
14	Association Between Risk Factors for Colorectal Cancer and Risk of Serrated Polyps and Conventional Adenomas. Gastroenterology, 2018, 155, 355-373.e18.	0.6	138
15	Novel Common Genetic Susceptibility Loci for Colorectal Cancer. Journal of the National Cancer Institute, 2019, 111, 146-157.	3.0	129
16	Long-term use of antibiotics and risk of colorectal adenoma. Gut, 2018, 67, gutjnl-2016-313413.	6.1	125
17	Dietary Patterns and Risk of Colorectal Cancer: Analysis by Tumor Location and Molecular Subtypes. Gastroenterology, 2017, 152, 1944-1953.e1.	0.6	124
18	Folate intake and risk of colorectal cancer and adenoma: modification by time. American Journal of Clinical Nutrition, 2011, 93, 817-825.	2.2	123

#	Article	IF	Citations
19	A randomized trial on folic acid supplementation and risk of recurrent colorectal adenoma. American Journal of Clinical Nutrition, 2009, 90, 1623-1631.	2.2	120
20	Determinants of plasma 25-hydroxyvitamin D and development of prediction models in three US cohorts. British Journal of Nutrition, 2012, 108, 1889-1896.	1.2	113
21	Western Dietary Pattern Increases, and Prudent Dietary Pattern Decreases, Risk of Incident Diverticulitis in a Prospective CohortÂStudy. Gastroenterology, 2017, 152, 1023-1030.e2.	0.6	111
22	Sedentary Behaviors, TV Viewing Time, and Risk of Young-Onset Colorectal Cancer. JNCI Cancer Spectrum, 2018, 2, pky073.	1.4	110
23	Processed and Unprocessed Red Meat and Risk of Colorectal Cancer: Analysis by Tumor Location and Modification by Time. PLoS ONE, 2015, 10, e0135959.	1.1	106
24	Dietary Patterns and Risk of Prostate Cancer in U.S. Men. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 167-171.	1.1	104
25	Diets That Promote Colon Inflammation Associate With Risk of Colorectal Carcinomas That Contain Fusobacterium nucleatum. Clinical Gastroenterology and Hepatology, 2018, 16, 1622-1631.e3.	2.4	103
26	Trajectory of body shape across the lifespan and cancer risk. International Journal of Cancer, 2016, 138, 2383-2395.	2.3	101
27	The Prognostic Role of Macrophage Polarization in the Colorectal Cancer Microenvironment. Cancer Immunology Research, 2021, 9, 8-19.	1.6	95
28	Periodontal disease, tooth loss and colorectal cancer risk: Results from the Nurses' Health Study. International Journal of Cancer, 2017, 140, 646-652.	2.3	94
29	Manganese superoxide dismutase (MnSOD) gene polymorphism, interactions with carotenoid levels and prostate cancer risk. Carcinogenesis, 2008, 29, 2335-2340.	1.3	92
30	Sugar-sweetened beverage intake in adulthood and adolescence and risk of early-onset colorectal cancer among women. Gut, 2021, 70, 2330-2336.	6.1	92
31	Dietary patterns and risk of colon cancer and adenoma in a cohort of men (United States). Cancer Causes and Control, 2004, 15, 853-862.	0.8	88
32	Dietary intake of fish, ωâ€3 and ωâ€6 fatty acids and risk of colorectal cancer: A prospective study in U.S. men and women. International Journal of Cancer, 2014, 135, 2413-2423.	2.3	85
33	Calcium and Vitamin D Intakes in Relation to Risk of Distal Colorectal Adenoma in Women. American Journal of Epidemiology, 2007, 165, 1178-1186.	1.6	84
34	Plasma 25-hydroxyvitamin D and colorectal cancer risk according to tumour immunity status. Gut, 2016, 65, 296-304.	6.1	83
35	Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer. PLoS Genetics, 2014, 10, e1004228.	1.5	81
36	Prognostic Significance and Molecular Features of Signet-Ring Cell and Mucinous Components in Colorectal Carcinoma. Annals of Surgical Oncology, 2015, 22, 1226-1235.	0.7	81

#	Article	IF	Citations
37	Meat Mutagens and Risk of Distal Colon Adenoma in a Cohort of U.S. Men. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 1120-1125.	1.1	80
38	Post Diagnosis Diet Quality and Colorectal Cancer Survival in Women. PLoS ONE, 2014, 9, e115377.	1.1	74
39	Early Life Body Fatness and Risk of Colorectal Cancer in U.S. Women and Men—Results from Two Large Cohort Studies. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 690-697.	1.1	74
40	Folic acid and prevention of colorectal adenomas: A combined analysis of randomized clinical trials. International Journal of Cancer, 2011, 129, 192-203.	2.3	73
41	Consumption of red and processed meat and breast cancer incidence: A systematic review and metaâ€analysis of prospective studies. International Journal of Cancer, 2018, 143, 2787-2799.	2.3	73
42	Marine ω-3 Polyunsaturated Fatty Acid Intake and Risk of Colorectal Cancer Characterized by Tumor-Infiltrating T Cells. JAMA Oncology, 2016, 2, 1197.	3.4	68
43	Loss of CDH1 (E-cadherin) expression is associated with infiltrative tumour growth and lymph node metastasis. British Journal of Cancer, 2016, 114, 199-206.	2.9	68
44	Meat intake and risk of diverticulitis among men. Gut, 2018, 67, 466-472.	6.1	68
45	Mendelian Randomization Study of Body Mass Index and Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1024-1031.	1.1	67
46	Sugar-Sweetened Beverage Intake and Cancer Recurrence and Survival in CALGB 89803 (Alliance). PLoS ONE, 2014, 9, e99816.	1.1	65
47	Comprehensive Assessment of Diet Quality and Risk of Precursors ofÂEarly-Onset Colorectal Cancer. Journal of the National Cancer Institute, 2021, 113, 543-552.	3.0	65
48	Plasma Adiponectin and Soluble Leptin Receptor and Risk of Colorectal Cancer: A Prospective Study. Cancer Prevention Research, 2013, 6, 875-885.	0.7	64
49	Risk Factor Profiles Differ for Cancers of Different Regions of the Colorectum. Gastroenterology, 2020, 159, 241-256.e13.	0.6	64
50	Incident Type 2 Diabetes Duration and Cancer Risk: A Prospective Study in Two US Cohorts. Journal of the National Cancer Institute, 2021, 113, 381-389.	3.0	64
51	Adherence to a Healthy Lifestyle is Associated With a Lower Risk of Diverticulitis among Men. American Journal of Gastroenterology, 2017, 112, 1868-1876.	0.2	63
52	Regular Aspirin Use Associates With Lower Risk of ColorectalÂCancers With Low Numbers of Tumor-Infiltrating Lymphocytes. Gastroenterology, 2016, 151, 879-892.e4.	0.6	62
53	Association Between Inflammatory Diet Pattern and Risk of Colorectal Carcinoma Subtypes Classified by Immune Responses to Tumor. Gastroenterology, 2017, 153, 1517-1530.e14.	0.6	62
54	Coffee Intake, Recurrence, and Mortality in Stage III Colon Cancer: Results From CALGB 89803 (Alliance). Journal of Clinical Oncology, 2015, 33, 3598-3607.	0.8	60

#	Article	IF	CITATIONS
55	Associations between unprocessed red and processed meat, poultry, seafood and egg intake and the risk of prostate cancer: A pooled analysis of 15 prospective cohort studies. International Journal of Cancer, 2016, 138, 2368-2382.	2.3	59
56	Tumor LINE-1 Methylation Level and Microsatellite Instability in Relation to Colorectal Cancer Prognosis. Journal of the National Cancer Institute, 2014, 106, .	3.0	58
57	Simple Sugar and Sugar-Sweetened Beverage Intake During Adolescence and Risk of Colorectal Cancer Precursors. Gastroenterology, 2021, 161, 128-142.e20.	0.6	58
58	Association of dietary insulinemic potential and colorectal cancer risk in men and women. American Journal of Clinical Nutrition, 2018, 108, 363-370.	2.2	57
59	Variations in Plasma Lycopene and Specific Isomers over Time in a Cohort of U.S. Men. Journal of Nutrition, 2003, 133, 1930-1936.	1.3	55
60	Progress and Opportunities in Molecular Pathological Epidemiology of Colorectal Premalignant Lesions. American Journal of Gastroenterology, 2014, 109, 1205-1214.	0.2	55
61	MicroRNA <i>MIR21</i> (miR-21) and PTGS2 Expression in Colorectal Cancer and Patient Survival. Clinical Cancer Research, 2016, 22, 3841-3848.	3.2	53
62	TIME (Tumor Immunity in the MicroEnvironment) classification based on tumor <i>CD274</i> (PD-L1) expression status and tumor-infiltrating lymphocytes in colorectal carcinomas. Oncolmmunology, 2018, 7, e1442999.	2.1	53
63	Association Between Coffee Intake After Diagnosis of Colorectal Cancer and Reduced Mortality. Gastroenterology, 2018, 154, 916-926.e9.	0.6	52
64	The Amount of Bifidobacterium Genus in Colorectal Carcinoma Tissue in Relation to Tumor Characteristics and Clinical Outcome. American Journal of Pathology, 2018, 188, 2839-2852.	1.9	51
65	Nut Consumption and Survival in Patients With Stage III Colon Cancer: Results From CALGB 89803 (Alliance). Journal of Clinical Oncology, 2018, 36, 1112-1120.	0.8	50
66	Dietary patterns during high school and risk of colorectal adenoma in a cohort of middle-aged women. International Journal of Cancer, 2014, 134, 2458-2467.	2.3	46
67	Association Between Obesity and Weight Change and Risk of Diverticulitis in Women. Gastroenterology, 2018, 155, 58-66.e4.	0.6	46
68	Polyclonal human antibodies against glycans bearing red meat-derived non-human sialic acid N-glycolylneuraminic acid are stable, reproducible, complex and vary between individuals: Total antibody levels are associated with colorectal cancer risk. PLoS ONE, 2018, 13, e0197464.	1.1	45
69	The Sulfur Microbial Diet Is Associated With Increased Risk of Early-Onset Colorectal Cancer Precursors. Gastroenterology, 2021, 161, 1423-1432.e4.	0.6	45
70	Association Between Plasma Levels of Macrophage Inhibitory Cytokine-1 Before Diagnosis of Colorectal Cancer and Mortality. Gastroenterology, 2015, 149, 614-622.	0.6	44
71	Dietary Inflammatory and Insulinemic Potential and Risk of Type 2 Diabetes: Results From Three Prospective U.S. Cohort Studies. Diabetes Care, 2020, 43, 2675-2683.	4.3	43
72	Body mass index and risk of colorectal cancer according to tumor lymphocytic infiltrate. International Journal of Cancer, 2016, 139, 854-868.	2.3	42

#	Article	IF	Citations
73	Meat Cooking Methods and Risk of Type 2 Diabetes: Results From Three Prospective Cohort Studies. Diabetes Care, 2018, 41, 1049-1060.	4.3	42
74	Discovery and Features of an Alkylating Signature in Colorectal Cancer. Cancer Discovery, 2021, 11, 2446-2455.	7.7	42
75	Dietary intake of fiber, whole grains and risk of colorectal cancer: An updated analysis according to food sources, tumor location and molecular subtypes in two large US cohorts. International Journal of Cancer, 2019, 145, 3040-3051.	2.3	41
76	Total Vitamin D Intake and Risks of Early-Onset Colorectal Cancer and Precursors. Gastroenterology, 2021, 161, 1208-1217.e9.	0.6	40
77	Is Timing Important? The Role of Diet and Lifestyle During Early Life on Colorectal Neoplasia. Current Colorectal Cancer Reports, 2018, 14, 1-11.	1.0	39
78	Calcium intake and risk of colorectal cancer according to expression status of calcium-sensing receptor (CASR). Gut, 2018, 67, 1475-1483.	6.1	39
79	Intake of Dietary Fiber, Fruits, and Vegetables and Risk of Diverticulitis. American Journal of Gastroenterology, 2019, 114, 1531-1538.	0.2	38
80	Marine $\ddot{\text{l}}$ %-3 Polyunsaturated Fatty Acids and Risk for Colorectal Cancer According to Microsatellite Instability. Journal of the National Cancer Institute, 2015, 107, .	3.0	37
81	Prediagnosis Plasma Adiponectin in Relation to Colorectal Cancer Risk According to <i>KRAS</i> Mutation Status. Journal of the National Cancer Institute, 2016, 108, djv363.	3.0	37
82	Association of <i>Fusobacterium nucleatum</i> with Specific T-cell Subsets in the Colorectal Carcinoma Microenvironment. Clinical Cancer Research, 2021, 27, 2816-2826.	3.2	36
83	Prognostic Significance of Immune Cell Populations Identified by Machine Learning in Colorectal Cancer Using Routine Hematoxylin and Eosin–Stained Sections. Clinical Cancer Research, 2020, 26, 4326-4338.	3.2	35
84	Lifestyle and Risk of Chronic Prostatitis/Chronic Pelvic Pain Syndrome in a Cohort of United States Male Health Professionals. Journal of Urology, 2015, 194, 1295-1300.	0.2	34
85	Meat intake and risk of hepatocellular carcinoma in two large US prospective cohorts of women and men. International Journal of Epidemiology, 2019, 48, 1863-1871.	0.9	34
86	Use of glucosamine and chondroitin supplements in relation to risk of colorectal cancer: Results from the Nurses' Health Study and Health Professionals followâ€up study. International Journal of Cancer, 2016, 139, 1949-1957.	2.3	33
87	Interactions between Plasma Levels of 25-Hydroxyvitamin D, Insulin-Like Growth Factor (IGF)-1 and C-Peptide with Risk of Colorectal Cancer. PLoS ONE, 2011, 6, e28520.	1.1	32
88	Influence of Dietary Patterns on Plasma Soluble CD14, a Surrogate Marker of Gut Barrier Dysfunction. Current Developments in Nutrition, 2017, 1, e001396.	0.1	32
89	Adulthood Weight Change and Risk of Colorectal Cancer in the Nurses' Health Study and Health Professionals Follow-up Study. Cancer Prevention Research, 2015, 8, 620-627.	0.7	31
90	Tumour budding, poorly differentiated clusters, and T-cell response in colorectal cancer. EBioMedicine, 2020, 57, 102860.	2.7	31

#	Article	IF	Citations
91	Tumor LINE-1 methylation level and colorectal cancer location in relation to patient survival. Oncotarget, 2016, 7, 55098-55109.	0.8	31
92	Genetic Predictors of Circulating 25-Hydroxyvitamin D and Risk of Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 2037-2046.	1.1	30
93	Plasma Inflammatory Markers and Risk of Advanced Colorectal Adenoma in Women. Cancer Prevention Research, 2016, 9, 27-34.	0.7	30
94	Survival Benefit of Exercise Differs by Tumor IRS1 Expression Status in Colorectal Cancer. Annals of Surgical Oncology, 2016, 23, 908-917.	0.7	29
95	Identification of a common variant with potential pleiotropic effect on risk of inflammatory bowel disease and colorectal cancer. Carcinogenesis, 2015, 36, 999-1007.	1.3	28
96	No Association Between Vitamin D Supplementation and Risk of Colorectal Adenomas or Serrated Polyps in a Randomized Trial. Clinical Gastroenterology and Hepatology, 2021, 19, 128-135.e6.	2.4	28
97	Dietary Intakes of Red Meat, Poultry, and Fish During High School and Risk of Colorectal Adenomas in Women. American Journal of Epidemiology, 2013, 178, 172-183.	1.6	27
98	Alcohol, one-carbon nutrient intake, and risk of colorectal cancer according to tumor methylation level of IGF2 differentially methylated region. American Journal of Clinical Nutrition, 2014, 100, 1479-1488.	2.2	27
99	A Pooled Analysis of 15 Prospective Cohort Studies on the Association between Fruit, Vegetable, and Mature Bean Consumption and Risk of Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1276-1287.	1.1	27
100	Association of autophagy status with amount of <i>Fusobacterium nucleatum</i> in colorectal cancer. Journal of Pathology, 2020, 250, 397-408.	2.1	27
101	Periodontal disease, tooth loss, and risk of oesophageal and gastric adenocarcinoma: a prospective study. Gut, 2021, 70, 620-621.	6.1	27
102	Assessing individual risk for highâ€risk colorectal adenoma at firstâ€time screening colonoscopy. International Journal of Cancer, 2015, 137, 1719-1728.	2.3	25
103	Associations of artificially sweetened beverage intake with disease recurrence and mortality in stage III colon cancer: Results from CALGB 89803 (Alliance). PLoS ONE, 2018, 13, e0199244.	1.1	25
104	A healthy lifestyle pattern and the risk of symptomatic gallstone disease: results from 2 prospective cohort studies. American Journal of Clinical Nutrition, 2020, 112, 586-594.	2.2	24
105	Association of Screening Lower Endoscopy With Colorectal Cancer Incidence and Mortality in Adults Older Than 75 Years. JAMA Oncology, 2021, 7, 985.	3.4	24
106	Predicted 25(OH)D Score and Colorectal Cancer Risk According to Vitamin D Receptor Expression. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1628-1637.	1.1	23
107	Prediagnostic Plasma Adiponectin and Survival among Patients with Colorectal Cancer. Cancer Prevention Research, 2015, 8, 1138-1145.	0.7	23
108	A Prospective Analysis of Meat Mutagens and Colorectal Cancer in the Nurses' Health Study and Health Professionals Follow-up Study. Environmental Health Perspectives, 2016, 124, 1529-1536.	2.8	23

#	Article	IF	Citations
109	Sedentary behaviors and light-intensity activities in relation to colorectal cancer risk. International Journal of Cancer, 2016, 138, 2109-2117.	2.3	23
110	Spatial Organization and Prognostic Significance of NK and NKT-like Cells via Multimarker Analysis of the Colorectal Cancer Microenvironment. Cancer Immunology Research, 2022, 10, 215-227.	1.6	23
111	Non-alcoholic fatty liver disease and colorectal cancer survival. Cancer Causes and Control, 2019, 30, 165-168.	0.8	22
112	Yogurt consumption and risk of conventional and serrated precursors of colorectal cancer. Gut, 2020, 69, 970.1-972.	6.1	22
113	Vitamin D status after colorectal cancer diagnosis and patient survival according to immune response to tumour. European Journal of Cancer, 2018, 103, 98-107.	1.3	21
114	Association of type and intensity of physical activity with plasma biomarkers of inflammation and insulin response. International Journal of Cancer, 2019, 145, 360-369.	2.3	21
115	An integrated analysis of lymphocytic reaction, tumour molecular characteristics and patient survival in colorectal cancer. British Journal of Cancer, 2020, 122, 1367-1377.	2.9	21
116	Tumor Long Interspersed Nucleotide Element-1 (LINE-1) Hypomethylation in Relation to Age of Colorectal Cancer Diagnosis and Prognosis. Cancers, 2021, 13, 2016.	1.7	21
117	Influence of dietary insulin scores on survival in colorectal cancer patients. British Journal of Cancer, 2017, 117, 1079-1087.	2.9	20
118	Calcium Intake and Survival after Colorectal Cancer Diagnosis. Clinical Cancer Research, 2019, 25, 1980-1988.	3.2	20
119	Long-Term Colorectal Cancer Incidence and Mortality After Colonoscopy Screening According to Individuals' Risk Profiles. Journal of the National Cancer Institute, 2021, 113, 1177-1185.	3.0	20
120	Intake of Meat Mutagens and Risk of Prostate Cancer in a Cohort of U.S. Health Professionals. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1557-1563.	1.1	19
121	Rotating night shift work, sleep, and colorectal adenoma in women. International Journal of Colorectal Disease, 2017, 32, 1013-1018.	1.0	19
122	Physical activity during adolescence and risk of colorectal adenoma later in life: results from the Nurses' Health Study II. British Journal of Cancer, 2019, 121, 86-94.	2.9	19
123	Association Between Inflammatory Diets, Circulating Markers of Inflammation, and Risk of Diverticulitis. Clinical Gastroenterology and Hepatology, 2020, 18, 2279-2286.e3.	2.4	19
124	Effect of Supplementation With Marine ω-3 Fatty Acid on Risk of Colorectal Adenomas and Serrated Polyps in the US General Population. JAMA Oncology, 2020, 6, 108.	3.4	19
125	Body mass index and risk of colorectal carcinoma subtypes classified by tumor differentiation status. European Journal of Epidemiology, 2017, 32, 393-407.	2.5	18
126	Healthy lifestyle, endoscopic screening, and colorectal cancer incidence and mortality in the United States: A nationwide cohort study. PLoS Medicine, 2021, 18, e1003522.	3.9	18

#	Article	IF	Citations
127	Immune cell profiles in the tumor microenvironment of early-onset, intermediate-onset, and later-onset colorectal cancer. Cancer Immunology, Immunotherapy, 2022, 71, 933-942.	2.0	18
128	Meat Mutagens and Breast Cancer in Postmenopausal Womenâ€"A Cohort Analysis. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 1301-1310.	1.1	17
129	Postdiagnostic intake of one-carbon nutrients and alcohol in relation to colorectal cancer survival. American Journal of Clinical Nutrition, 2015, 102, 1134-1141.	2.2	17
130	A Prospective Study of Smoking and Risk of Synchronous Colorectal Cancers. American Journal of Gastroenterology, 2017, 112, 493-501.	0.2	17
131	Dietary glycemic and insulin scores and colorectal cancer survival by tumor molecular biomarkers. International Journal of Cancer, 2017, 140, 2648-2656.	2.3	17
132	Genetic variation in the ADIPOQ gene, adiponectin concentrations and risk of colorectal cancer: a Mendelian Randomization analysis using data from three large cohort studies. European Journal of Epidemiology, 2017, 32, 419-430.	2.5	17
133	Prognostic association of PTGS2 (COX-2) over-expression according to BRAF mutation status in colorectal cancer: Results from two prospective cohorts and CALGB 89803 (Alliance) trial. European Journal of Cancer, 2019, 111, 82-93.	1.3	17
134	Endogenous sex hormones and colorectal cancer survival among men and women. International Journal of Cancer, 2020, 147, 920-930.	2.3	17
135	Plasma 25-Hydroxyvitamin D and Risk of Colorectal Cancer after Adjusting for Inflammatory Markers. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2175-2180.	1.1	16
136	Oral Contraceptive Use and Colorectal Cancer in the Nurses' Health Study I and II. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1214-1221.	1.1	16
137	Lifecourse Epidemiology and Molecular Pathological Epidemiology. American Journal of Preventive Medicine, 2015, 48, 116-119.	1.6	16
138	Longâ€term status of predicted body fat percentage, body mass index and other anthropometric factors with risk of colorectal carcinoma: Two large prospective cohort studies in the US. International Journal of Cancer, 2020, 146, 2383-2393.	2.3	16
139	Post-diagnosis dietary insulinemic potential and survival outcomes among colorectal cancer patients. BMC Cancer, 2020, 20, 817.	1.1	16
140	Sugar-sweetened beverage and sugar consumption and colorectal cancer incidence and mortality according to anatomic subsite. American Journal of Clinical Nutrition, 2022, 115, 1481-1489.	2.2	16
141	A prospective study on supplemental vitamin e intake and risk of colon cancer in women and men. Cancer Epidemiology Biomarkers and Prevention, 2002, 11, 1298-304.	1.1	15
142	Polymorphisms in Xenobiotic Metabolizing Genes, Intakes of Heterocyclic Amines and Red Meat, and Postmenopausal Breast Cancer. Nutrition and Cancer, 2013, 65, 1122-1131.	0.9	14
143	Menopausal Hormone Therapy and Risk of Diverticulitis. American Journal of Gastroenterology, 2019, 114, 315-321.	0.2	14
144	Colorectal cancer susceptibility variants and risk of conventional adenomas and serrated polyps: results from three cohort studies. International Journal of Epidemiology, 2020, 49, 259-269.	0.9	13

#	Article	IF	Citations
145	Periodontal Disease, Tooth Loss, and Risk of Serrated Polyps and Conventional Adenomas. Cancer Prevention Research, 2020, 13, 699-706.	0.7	13
146	Acid-suppressive medications and risk of colorectal cancer: results from three large prospective cohort studies. British Journal of Cancer, 2020, 123, 844-851.	2.9	13
147	Alcohol intake in early adulthood and risk of colorectal cancer: three large prospective cohort studies of men and women in the United States. European Journal of Epidemiology, 2021, 36, 325-333.	2.5	13
148	Dietary fat and fatty acids in relation to risk of colorectal cancer. European Journal of Nutrition, 2022, 61, 1863-1873.	1.8	13
149	Tumor expression of calcium sensing receptor and colorectal cancer survival: Results from the nurses' health study and health professionals followâ€up study. International Journal of Cancer, 2017, 141, 2471-2479.	2.3	12
150	Diet-quality scores and the risk of symptomatic gallstone disease: a prospective cohort study of male US health professionals. International Journal of Epidemiology, 2018, 47, 1938-1946.	0.9	12
151	Association of Circulating Vitamin D With Colorectal Cancer Depends on Vitamin D–Binding Protein Isoforms: A Pooled, Nested, Case-Control Study. JNCI Cancer Spectrum, 2020, 4, pkz083.	1.4	12
152	Night-Shift Work Duration and Risk of Colorectal Cancer According to <i>IRS1</i> and <i>IRS2</i> Expression. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 133-140.	1.1	12
153	Dietary Intake of Branched-Chain Amino Acids and Risk of Colorectal Cancer. Cancer Prevention Research, 2020, 13, 65-72.	0.7	12
154	Association of folate intake and colorectal cancer risk in the postfortification era in US women. American Journal of Clinical Nutrition, 2021, 114, 49-58.	2.2	12
155	Plasma sex hormones and risk of conventional and serrated precursors of colorectal cancer in postmenopausal women. BMC Medicine, 2021, 19, 18.	2.3	12
156	Calcium Intake and Risk of Colorectal Cancer According to Tumor-infiltrating T Cells. Cancer Prevention Research, 2019, 12, 283-294.	0.7	11
157	Dairy intake during adolescence and risk of colorectal adenoma later in life. British Journal of Cancer, 2021, 124, 1160-1168.	2.9	11
158	Plasma metabolomic profiles for colorectal cancer precursors in women. European Journal of Epidemiology, 2022, 37, 413-422.	2.5	11
159	Resistance training and total and site-specific cancer risk: a prospective cohort study of 33,787 US men. British Journal of Cancer, 2020, 123, 666-672.	2.9	10
160	No Evidence of Gene–Calcium Interactions from Genome-Wide Analysis of Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2971-2976.	1.1	9
161	Prognostic Utility of Molecular Factors by Age at Diagnosis of Colorectal Cancer. Clinical Cancer Research, 2016, 22, 1489-1498.	3.2	9
162	Plasma Biomarkers of Insulin and the Insulin-like Growth Factor Axis, and Risk of Colorectal Adenoma and Serrated Polyp. JNCI Cancer Spectrum, 2019, 3, pkz056.	1.4	9

#	Article	IF	Citations
163	Prediagnostic Circulating Concentrations of Vitamin D Binding Protein and Survival among Patients with Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2323-2331.	1.1	9
164	Sugar-sweetened beverage, artificially sweetened beverage and sugar intake and colorectal cancer survival. British Journal of Cancer, 2021, 125, 1016-1024.	2.9	9
165	Desmoplastic Reaction, Immune Cell Response, and Prognosis in Colorectal Cancer. Frontiers in Immunology, 2022, 13, 840198.	2.2	9
166	Glucosamine and Chondroitin Supplements and Risk of Colorectal Adenoma and Serrated Polyp. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2693-2701.	1.1	8
167	Smoking Status at Diagnosis and Colorectal Cancer Prognosis According to Tumor Lymphocytic Reaction. JNCI Cancer Spectrum, 2020, 4, pkaa040.	1.4	8
168	Changes in Lifestyle Factors After Endoscopic Screening: AÂProspective Study in the United States. Clinical Gastroenterology and Hepatology, 2022, 20, e1240-e1249.	2.4	8
169	Plasma Metabolite Profiles of Red Meat, Poultry, and Fish Consumption, and Their Associations with Colorectal Cancer Risk. Nutrients, 2022, 14, 978.	1.7	8
170	Association Between Intake of Red and Processed MeatÂandÂSurvival in Patients With Colorectal Cancer inÂaÂPooled Analysis. Clinical Gastroenterology and Hepatology, 2019, 17, 1561-1570.e3.	2.4	7
171	Frequency of Bowel Movements and Risk of Diverticulitis. Clinical Gastroenterology and Hepatology, 2022, 20, 325-333.e5.	2.4	7
172	History of Diverticulitis and Risk of Incident Cardiovascular Disease in Men: A Cohort Study. Digestive Diseases and Sciences, $2021, 1.$	1.1	7
173	Postdiagnostic dairy products intake and colorectal cancer survival in US males and females. American Journal of Clinical Nutrition, 2021, 113, 1636-1646.	2.2	7
174	Calcium intake and colon cancer risk subtypes by tumor molecular characteristics. Cancer Causes and Control, 2019, 30, 637-649.	0.8	6
175	Association between yogurt consumption and plasma soluble CD14 in two prospective cohorts of US adults. European Journal of Nutrition, 2021, 60, 929-938.	1.8	6
176	Preexisting Type 2 Diabetes and Survival among Patients with Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 757-764.	1.1	6
177	Body fatness over the life course and risk of serrated polyps and conventional adenomas. International Journal of Cancer, 2020, 147, 1831-1844.	2.3	5
178	Obesity, Adiposity, and Risk of Symptomatic Gallstone Disease According to Genetic Susceptibility. Clinical Gastroenterology and Hepatology, 2022, 20, e1083-e1120.	2.4	5
179	Adolescent Plant Product Intake in Relation to Later Prostate Cancer Risk and Mortality in the NIH-AARP Diet and Health Study. Journal of Nutrition, 2021, 151, 3223-3231.	1.3	5
180	A prospective study of oral contraceptive use and colorectal adenomas. Cancer Causes and Control, 2016, 27, 749-757.	0.8	4

#	Article	IF	Citations
181	A prospective study of erythrocyte polyunsaturated fatty acids and risk of colorectal serrated polyps and conventional adenomas. International Journal of Cancer, 2021, 148, 57-66.	2.3	4
182	Preventable fractions of colon and breast cancers by increasing physical activity in Brazil: perspectives from plausible counterfactual scenarios. Cancer Epidemiology, 2018, 56, 38-45.	0.8	3
183	Adolescent animal product intake in relation to later prostate cancer risk and mortality in the NIH-AARP Diet and Health Study. British Journal of Cancer, 2021, 125, 1158-1167.	2.9	3
184	Gallstone Disease and Risk of Conventional Adenomas and Serrated Polyps: A Prospective Study. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 2346-2349.	1.1	3
185	Risk prediction models for colorectal cancer: Evaluating the discrimination due to added biomarkers. International Journal of Cancer, 2021, 149, 1021-1030.	2.3	2
186	Dietary Fat and Fatty Acids Intake in Relation to Risk of Colorectal Cancer. Current Developments in Nutrition, 2021, 5, 284.	0.1	0
187	Abstract 840: Gallstones and risk of cancers of the liver, biliary tract, and pancreas: A prospective study within two U.S. cohorts., 2021,,.		0
188	Genetic Obesity Variants and Risk of Conventional Adenomas and Serrated Polyps. Digestive Diseases and Sciences, 2021, , 1.	1.1	0
189	Bifidobacterium Genus in Colorectal Carcinoma Tissue in relation to Tumor Characteristics and Patient Survival. FASEB Journal, 2018, 32, 407.3.	0.2	0