Jason M Warram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/110083/publications.pdf

Version: 2024-02-01

67	3,076	29	54
papers	citations	h-index	g-index
69	69	69	3925
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Predicting Schwannoma Growth in a Tumor Model Using Targeted Imaging. Otology and Neurotology, 2021, 42, e615-e623.	1.3	2
2	Hyperintensity of integrinâ€ŧargeted fluorescence agent IntegriSense750 accurately predicts flap necrosis compared to Indocyanine green. Head and Neck, 2021, , .	2.0	0
3	Surgical margins in oral cavity squamous cell carcinoma: Current practices and future directions. Laryngoscope, 2020, 130, 128-138.	2.0	54
4	Targeting MMP-14 for dual PET and fluorescence imaging of glioma in preclinical models. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1412-1426.	6.4	29
5	A cell-penetrating MARCKS mimetic selectively triggers cytolytic death in glioblastoma. Oncogene, 2020, 39, 6961-6974.	5.9	12
6	Fluorescently Labeled Cetuximab-IRDye800 for Guided Surgical Excision of Ameloblastoma: A Proof of Principle Study. Journal of Oral and Maxillofacial Surgery, 2020, 78, 1736-1747.	1.2	8
7	Comparison of Panitumumab-IRDye800CW and 5-Aminolevulinic Acid to Provide Optical Contrast in a Model of Glioblastoma Multiforme. Molecular Cancer Therapeutics, 2020, 19, 1922-1929.	4.1	12
8	Novel EGFR ectodomain mutations associated with ligand-independent activation and cetuximab resistance in head and neck cancer. PLoS ONE, 2020, 15, e0229077.	2.5	12
9	Adjuvant anti-angiogenic therapy enhances chemotherapeutic uptake in a murine model of head and neck cancer. Journal of Drug Targeting, 2019, 27, 193-200.	4.4	3
10	Current and Future Imaging Methods for Evaluating Response to Immunotherapy in Neuro-Oncology. Theranostics, 2019, 9, 5085-5104.	10.0	29
11	Genetic strategy to decrease complement activation with adenoviral therapies. PLoS ONE, 2019, 14, e0215226.	2.5	4
12	Panitumumab-IRDye800CW for Fluorescence-Guided Surgical Resection of Colorectal Cancer. Journal of Surgical Research, 2019, 239, 44-51.	1.6	23
13	Fluorescence Imaging of Nerves During Surgery. Annals of Surgery, 2019, 270, 69-76.	4.2	52
14	Evaluation of fluorescenceâ€guided surgery agents in a murine model of soft tissue fibrosarcoma. Journal of Surgical Oncology, 2018, 117, 1179-1187.	1.7	8
15	Evaluation of optical imaging agents in a fluorescence-guided surgical model of head and neck cancer. Surgical Oncology, 2018, 27, 225-230.	1.6	8
16	Recommendations for reporting on emerging optical imaging agents to promote clinical approval. Theranostics, 2018, 8, 5336-5347.	10.0	51
17	Ultrasoundâ€Triggered Delivery of Anticancer Therapeutics from MRIâ€Visible Multilayer Microcapsules. Advanced Therapeutics, 2018, 1, 1800051.	3.2	30
18	Determination of Tumor Margins with Surgical Specimen Mapping Using Near-Infrared Fluorescence. Cancer Research, 2018, 78, 5144-5154.	0.9	143

#	Article	IF	Citations
19	Safety of panitumumab-IRDye800CW and cetuximab-IRDye800CW for fluorescence-guided surgical navigation in head and neck cancers. Theranostics, 2018, 8, 2488-2495.	10.0	113
20	Fluorescence Imaging for Cancer Screening and Surveillance. Molecular Imaging and Biology, 2017, 19, 645-655.	2.6	47
21	Beyond the margins: real-time detection of cancer using targeted fluorophores. Nature Reviews Clinical Oncology, 2017, 14, 347-364.	27.6	366
22	Effects of an Unlabeled Loading Dose on Tumor-Specific Uptake of a Fluorescently Labeled Antibody for Optical Surgical Navigation. Molecular Imaging and Biology, 2017, 19, 610-616.	2.6	30
23	Sensitivity and Specificity of Cetuximab-IRDye800CW to Identify Regional Metastatic Disease in Head and Neck Cancer. Clinical Cancer Research, 2017, 23, 4744-4752.	7.0	105
24	Regulatory Aspects of Optical Methods and Exogenous Targets for Cancer Detection. Cancer Research, 2017, 77, 2197-2206.	0.9	74
25	Laser-Assisted Indocyanine Green Dye Angiography for Postoperative Fistulas After Salvage Laryngectomy. JAMA Otolaryngology - Head and Neck Surgery, 2017, 143, 775.	2.2	10
26	Characterizing the detection threshold for optical imaging in surgical oncology. Journal of Surgical Oncology, 2017, 116, 898-906.	1.7	14
27	Oncologic Procedures Amenable to Fluorescence-guided Surgery. Annals of Surgery, 2017, 266, 36-47.	4.2	119
28	Characterizing the Utility and Limitations of Repurposing an Open-Field Optical Imaging Device for Fluorescence-Guided Surgery in Head and Neck Cancer Patients. Journal of Nuclear Medicine, 2017, 58, 246-251.	5.0	35
29	Specimen mapping in head and neck cancer using fluorescence imaging. Laryngoscope Investigative Otolaryngology, 2017, 2, 447-452.	1.5	37
30	Antiangiogenic antibody improves melanoma detection by fluorescently labeled therapeutic antibodies. Laryngoscope, 2016, 126, E387-E395.	2.0	8
31	Photoimmunotherapy of residual disease after incomplete surgical resection in head and neck cancer models. Cancer Medicine, 2016, 5, 1526-1534.	2.8	32
32	On the horizon: Optical imaging for cutaneous squamous cell carcinoma. Head and Neck, 2016, 38, E2204-13.	2.0	8
33	Fluorescence imaging to localize head and neck squamous cell carcinoma for enhanced pathological assessment. Journal of Pathology: Clinical Research, 2016, 2, 104-112.	3.0	32
34	SPARC-Independent Delivery of <i>Nab</i> -Paclitaxel without Depleting Tumor Stroma in Patient-Derived Pancreatic Cancer Xenografts. Molecular Cancer Therapeutics, 2016, 15, 680-688.	4.1	49
35	Successful Translation of Fluorescence Navigation During Oncologic Surgery: A Consensus Report. Journal of Nuclear Medicine, 2016, 57, 144-150.	5.0	125
36	In Vivo Fluorescence Immunohistochemistry: Localization of Fluorescently Labeled Cetuximab in Squamous Cell Carcinomas. Scientific Reports, 2015, 5, 10169.	3.3	76

#	Article	IF	CITATIONS
37	A ratiometric threshold for determining presence of cancer during fluorescence-guided surgery. Journal of Surgical Oncology, 2015, 112, 2-8.	1.7	25
38	The Status of Contemporary Image-Guided Modalities in Oncologic Surgery. Annals of Surgery, 2015, 261, 46-55.	4.2	112
39	Molecular Ultrasound Imaging of Tissue Inflammation Using an Animal Model of Acute Kidney Injury. Molecular Imaging and Biology, 2015, 17, 786-792.	2.6	21
40	Laparoscopic Fluorescent Visualization of the Ureter With Intravenous IRDye800CW. Journal of Minimally Invasive Gynecology, 2015, 22, 799-806.	0.6	44
41	Time-dependent pretreatment with bevacuzimab increases tumor specific uptake of cetuximab in preclinical oral cavity cancer studies. Cancer Biology and Therapy, 2015, 16, 790-798.	3.4	11
42	Fluorescence-guided resection of experimental malignant glioma using cetuximab-IRDye 800CW. British Journal of Neurosurgery, 2015, 29, 850-858.	0.8	38
43	Safety and Tumor Specificity of Cetuximab-IRDye800 for Surgical Navigation in Head and Neck Cancer. Clinical Cancer Research, 2015, 21, 3658-3666.	7.0	355
44	A Standardized Light-Emitting Diode Device for Photoimmunotherapy. Journal of Nuclear Medicine, 2014, 55, 1893-1898.	5.0	27
45	Volumetric Contrastâ€Enhanced Ultrasound Imaging of Renal Perfusion. Journal of Ultrasound in Medicine, 2014, 33, 1427-1437.	1.7	39
46	Biodistribution of P-selectin targeted microbubbles. Journal of Drug Targeting, 2014, 22, 387-394.	4.4	15
47	Defining the Detection Threshold for Optical Imaging in Surgical Resection. Journal of the American College of Surgeons, 2014, 219, S128.	0.5	0
48	Antibody-based imaging strategies for cancer. Cancer and Metastasis Reviews, 2014, 33, 809-822.	5.9	103
49	Ultrasound-Stimulated Drug Delivery for Treatment of Residual Disease after Incomplete Resection of Head and Neck Cancer. Ultrasound in Medicine and Biology, 2014, 40, 755-764.	1.5	25
50	Optical fluorescent imaging to monitor temporal effects of microbubble-mediated ultrasound therapy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 281-289.	3.0	17
51	An Animal Model Allowing Controlled Receptor Expression for Molecular Ultrasound Imaging. Ultrasound in Medicine and Biology, 2013, 39, 172-180.	1.5	11
52	Enhancement of Adenovirus Delivery after Ultrasound-Stimulated Therapy in a Cancer Model. Ultrasound in Medicine and Biology, 2013, 39, 2374-2381.	1.5	10
53	Alpha-CaMKII Plays a Critical Role in Determining the Aggressive Behavior of Human Osteosarcoma. Molecular Cancer Research, 2013, 11, 349-359.	3.4	28
54	Molecular ultrasound imaging using a novel tumor-bearing animal model with variable target receptor expression. , 2012, , .		0

#	Article	IF	Citations
55	Molecular Targeting of Ultrasonographic Contrast Agent for Detection of Head and Neck Squamous Cell Carcinoma. JAMA Otolaryngology, 2012, 138, 662.	1.2	24
56	Microbubble-mediated ultrasonic techniques for improved chemotherapeutic delivery in cancer. Journal of Drug Targeting, 2012, 20, 43-54.	4.4	79
57	A Tripleâ€Targeted Ultrasound Contrast Agent Provides Improved Localization to Tumor Vasculature. Journal of Ultrasound in Medicine, 2011, 30, 921-931.	1.7	82
58	A Genetic Strategy for Combined Screening and Localized Imaging of Breast Cancer. Molecular Imaging and Biology, 2011, 13, 452-461.	2.6	10
59	Model System Using Controlled Receptor Expression forÂEvaluating Targeted Ultrasound Contrast Agents. Ultrasound in Medicine and Biology, 2011, 37, 1306-1313.	1.5	15
60	Fibroblast Growth Factor Receptor Mediates Fibroblast-Dependent Growth in EMMPRIN-Depleted Head and Neck Cancer Tumor Cells. Molecular Cancer Research, 2011, 9, 1008-1017.	3.4	16
61	Determination of Breast Cancer Response to Bevacizumab Therapy Using Contrast-Enhanced Ultrasound and Artificial Neural Networks. Journal of Ultrasound in Medicine, 2010, 29, 577-585.	1.7	50
62	Validation of controlled receptor expression using adenoviral techniques and targeted ultrasound imaging. , 2010, , .		0
63	Quantitative elasticity measurements reveal intratumoral changes in response to antiangiogenic therapy - preliminary results. , 2009, , .		1
64	Death receptor 5 agonist TRA8 in combination with the bisphosphonate zoledronic acid attenuated the growth of breast cancer metastasis. Cancer Biology and Therapy, 2009, 8, 1109-1116.	3.4	5
65	Early Therapy Evaluation of Combined Anti–Death Receptor 5 Antibody and Gemcitabine in Orthotopic Pancreatic Tumor Xenografts by Diffusion-Weighted Magnetic Resonance Imaging. Cancer Research, 2008, 68, 8369-8376.	0.9	45
66	Endotoxin-Induced Proteolytic Reduction in Hepatic Growth Hormone (GH) Receptor: A Novel Mechanism for GH Insensitivity. Molecular Endocrinology, 2008, 22, 1427-1437.	3.7	40
67	Breast Tumor Xenografts: Diffusion-weighted MR Imaging to Assess Early Therapy with Novel Apoptosis-Inducing Anti-DR5 Antibody. Radiology, 2008, 248, 844-851.	7.3	61