Deepak Cyril D'souza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11007890/publications.pdf

Version: 2024-02-01

76 papers 5,766 citations

34 h-index 98798 67 g-index

78 all docs

78 docs citations

78 times ranked 5509 citing authors

#	Article	IF	CITATIONS
1	mTORC1 inhibitor effects on rapid ketamine-induced reductions in suicidal ideation in patients with treatment-resistant depression. Journal of Affective Disorders, 2022, 303, 91-97.	4.1	22
2	Cannabis and Psychosis: Recent Epidemiological Findings Continuing the "Causality Debate― American Journal of Psychiatry, 2022, 179, 8-10.	7.2	17
3	Timing of cannabis exposure relative to prodrome and psychosis onset in a community-based first episode psychosis sample. Journal of Psychiatric Research, 2022, 147, 248-253.	3.1	4
4	Consensus paper of the WFSBP task force on cannabis, cannabinoids and psychosis. World Journal of Biological Psychiatry, 2022, 23, 719-742.	2.6	40
5	Sex differences in the acute effects of intravenous (IV) delta-9 tetrahydrocannabinol (THC). Psychopharmacology, 2022, , 1.	3.1	4
6	Psychedelics: Old trips, new destinations in psychopharmacology research. Psychopharmacology, 2022, , 1.	3.1	0
7	Preliminary in vivo evidence of lower hippocampal synaptic density in cannabis use disorder. Molecular Psychiatry, 2021, 26, 3192-3200.	7.9	32
8	Simplified Quantification of $\langle \sup 11 \langle \sup \rangle C$ -UCB-J PET Evaluated in a Large Human Cohort. Journal of Nuclear Medicine, 2021, 62, 418-421.	5.0	19
9	Psychosocial and pharmacological treatments for cannabis use disorder and mental health comorbidities: a narrative review. Psychological Medicine, 2021, 51, 353-364.	4.5	17
10	Exocannabinoids, Endocannabinoids, and Psychosis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 600-602.	1.5	0
11	Differential Cognitive Performance in Females and Males with Regular Cannabis Use. Journal of the International Neuropsychological Society, 2021, 27, 570-580.	1.8	6
12	Identifying brain networks in synaptic density PET (11C-UCB-J) with independent component analysis. Neurolmage, 2021, 237, 118167.	4.2	18
13	Characterizing psychosis-relevant phenomena and cognitive function in a unique population with isolated, chronic and very heavy cannabis exposure. Psychological Medicine, 2020, 50, 2452-2459.	4.5	8
14	In vivo 5-HT6 and 5-HT2A receptor availability in antipsychotic treated schizophrenia patients vs. unmedicated healthy humans measured with [11C]GSK215083 PET. Psychiatry Research - Neuroimaging, 2020, 295, 111007.	1.8	17
15	The state of clinical outcome assessments for cannabis use disorder clinical trials: A review and research agenda. Drug and Alcohol Dependence, 2020, 212, 107993.	3.2	49
16	Psychosis-Relevant Effects of Intravenous Delta-9-Tetrahydrocannabinol: A Mega Analysis of Individual Participant-Data from Human Laboratory Studies. International Journal of Neuropsychopharmacology, 2020, 23, 559-570.	2.1	23
17	Association of Ketamine With Psychiatric Symptoms and Implications for Its Therapeutic Use and for Understanding Schizophrenia. JAMA Network Open, 2020, 3, e204693.	5.9	103
18	Psychiatric symptoms caused by cannabis constituents: a systematic review and meta-analysis. Lancet Psychiatry,the, 2020, 7, 344-353.	7.4	147

#	Article	IF	CITATIONS
19	Modulation of the antidepressant effects of ketamine by the mTORC1 inhibitor rapamycin. Neuropsychopharmacology, 2020, 45, 990-997.	5.4	127
20	Cannabis in psychiatric disorders: the cart before the horse?. Lancet Psychiatry, the, 2019, 6, 968-969.	7.4	2
21	Test-retest reliability of time-frequency measures of auditory steady-state responses in patients with schizophrenia and healthy controls. NeuroImage: Clinical, 2019, 23, 101878.	2.7	31
22	Efficacy and safety of a fatty acid amide hydrolase inhibitor (PF-04457845) in the treatment of cannabis withdrawal and dependence in men: a double-blind, placebo-controlled, parallel group, phase 2a single-site randomised controlled trial. Lancet Psychiatry,the, 2019, 6, 35-45.	7.4	125
23	Age-Related Change in 5-HT ₆ Receptor Availability in Healthy Male Volunteers Measured with ¹¹ C-GSK215083 PET. Journal of Nuclear Medicine, 2018, 59, 1445-1450.	5. 0	34
24	Dose-Related Target Occupancy and Effects on Circuitry, Behavior, and Neuroplasticity of the Glycine Transporter-1 Inhibitor PF-03463275 in Healthy and Schizophrenia Subjects. Biological Psychiatry, 2018, 84, 413-421.	1.3	43
25	Minimal effects of prolonged smoking abstinence or resumption on cognitive performance challenge the "self-medication―hypothesis in schizophrenia. Schizophrenia Research, 2018, 194, 62-69.	2.0	26
26	Tetrahydrocannabinol (THC) impairs encoding but not retrieval of verbal information. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79, 176-183.	4.8	27
27	Feasibility and success of cell-phone assisted remote observation of medication adherence (CAROMA) in clinical trials. Drug and Alcohol Dependence, 2016, 163, 24-30.	3.2	23
28	Reduced Brain Cannabinoid Receptor Availability in Schizophrenia. Biological Psychiatry, 2016, 79, 997-1005.	1.3	83
29	Rapid Changes in Cannabinoid 1 Receptor Availability in Cannabis-Dependent Male Subjects After Abstinence From Cannabis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 60-67.	1.5	135
30	Human Laboratory Studies on Cannabinoids and Psychosis. Biological Psychiatry, 2016, 79, 526-538.	1.3	113
31	Marijuana and Madness: Associations Between Cannabinoids and Psychosis. Biological Psychiatry, 2016, 79, 511-513.	1.3	13
32	The early identification of psychosis: can lessons be learnt from cardiac stress testing?. Psychopharmacology, 2016, 233, 19-37.	3.1	5
33	Marijuana Legalization: Impact on Physicians and Public Health. Annual Review of Medicine, 2016, 67, 453-466.	12.2	147
34	A Systematic Review of the Evidence for Medical Marijuana in Psychiatric Indications. Journal of Clinical Psychiatry, 2016, 77, 1050-1064.	2.2	63
35	GABA Deficits Enhance the Psychotomimetic Effects of Î"9-THC. Neuropsychopharmacology, 2015, 40, 2047-2056.	5.4	29
36	\hat{l} "9-THC Disrupts Gamma (\hat{l} 3)-Band Neural Oscillations in Humans. Neuropsychopharmacology, 2015, 40, 2124-2134.	5.4	57

#	Article	IF	CITATIONS
37	Medical Marijuana. JAMA - Journal of the American Medical Association, 2015, 313, 2431.	7.4	7 5
38	Role of GABA Deficit in Sensitivity to the Psychotomimetic Effects of Amphetamine. Neuropsychopharmacology, 2015, 40, 2822-2831.	5. 4	6
39	The Psychosis-like Effects of î"9-Tetrahydrocannabinol Are Associated With Increased Cortical Noise in Healthy Humans. Biological Psychiatry, 2015, 78, 805-813.	1.3	44
40	Effects of Nicotine on the Neurophysiological and Behavioral Effects of Ketamine in Humans. Frontiers in Psychiatry, 2014, 5, 3.	2.6	34
41	Gone to Pot ââ,¬â€œ A Review of the Association between Cannabis and Psychosis. Frontiers in Psychiatry, 2014, 5, 54.	2.6	235
42	Problems With the Medicalization of Marijuana. JAMA - Journal of the American Medical Association, 2014, 311, 2377.	7.4	40
43	Effects of Δ9-tetrahydrocannabinol in individuals with a familial vulnerability to alcoholism. Psychopharmacology, 2014, 231, 2385-2393.	3.1	7
44	Impact of Cannabis Use on the Development of Psychotic Disorders. Current Addiction Reports, 2014, 1, 115-128.	3.4	109
45	Spicing things up: synthetic cannabinoids. Psychopharmacology, 2013, 228, 525-540.	3.1	241
46	Pilot study of Intravenous Nicotine Effects on Cognitive Performance in Schizophrenia. Schizophrenia Research, 2013, 150, 323-324.	2.0	4
47	Glycine Transporter Inhibitor Attenuates the Psychotomimetic Effects of Ketamine in Healthy Males: Preliminary Evidence. Neuropsychopharmacology, 2012, 37, 1036-1046.	5.4	58
48	Dose-Related Modulation of Event-Related Potentials to Novel and Target Stimuli by Intravenous î"9-THC in Humans. Neuropsychopharmacology, 2012, 37, 1632-1646.	5 . 4	89
49	Lower \hat{I}^2 < sub>2 < /sub>*-Nicotinic Acetylcholine Receptor Availability in Smokers With Schizophrenia. American Journal of Psychiatry, 2012, 169, 326-334.	7.2	59
50	Dose-Related Behavioral, Subjective, Endocrine, and Psychophysiological Effects of the \hat{I}^2 Opioid Agonist Salvinorin A in Humans. Biological Psychiatry, 2012, 72, 871-879.	1.3	106
51	Cannabinoids, Working Memory, and Schizophrenia. Biological Psychiatry, 2012, 71, 662-663.	1.3	4
52	Nicotine Fails to Attenuate Ketamine-Induced Cognitive Deficits and Negative and Positive Symptoms in Humans: Implications for Schizophrenia. Biological Psychiatry, 2012, 72, 785-794.	1.3	36
53	The safety of studies with intravenous î"9-tetrahydrocannabinol in humans, with case histories. Psychopharmacology, 2012, 219, 885-896.	3.1	29
54	Cannabis, endocannabinoids and neurodevelopment., 2011,, 66-81.		2

#	Article	IF	CITATIONS
55	Cannabis and cognition: short- and long-term effects. , 2011, , 91-102.		15
56	Does cannabis cause lasting brain damage?., 2011,, 103-113.		3
57	Probing GABA Receptor Function in Schizophrenia with Iomazenil. Neuropsychopharmacology, 2011, 36, 677-683.	5.4	34
58	Efeitos comportamentais, cognitivos e psicofisiológicos dos canabinoides: relevância para a psicose e a esquizofrenia. Revista Brasileira De Psiquiatria, 2010, 32, 515-530.	1.7	27
59	Cannabinoids and psychosis. International Review of Psychiatry, 2009, 21, 152-162.	2.8	68
60	Cannabis and psychosis/schizophrenia: human studies. European Archives of Psychiatry and Clinical Neuroscience, 2009, 259, 413-431.	3. 2	221
61	Preliminary evidence of cannabinoid effects on brain-derived neurotrophic factor (BDNF) levels in humans. Psychopharmacology, 2009, 202, 569-578.	3.1	102
62	The effects of cannabinoids on serum cortisol and prolactin in humans. Psychopharmacology, 2009, 203, 737-744.	3.1	95
63	Effects of haloperidol on the behavioral, subjective, cognitive, motor, and neuroendocrine effects of Δ-9-tetrahydrocannabinol in humans. Psychopharmacology, 2008, 198, 587-603.	3.1	105
64	Blunted Psychotomimetic and Amnestic Effects of Î"-9-Tetrahydrocannabinol in Frequent Users of Cannabis. Neuropsychopharmacology, 2008, 33, 2505-2516.	5.4	225
65	Cannabinoids and Psychosis. International Review of Neurobiology, 2007, 78, 289-326.	2.0	83
66	î³-Aminobutyric Acid–Serotonin Interactions in Healthy Men: Implications for Network Models of Psychosis and Dissociation. Biological Psychiatry, 2006, 59, 128-137.	1.3	32
67	Greater vulnerability to the amnestic effects of ketamine in males. Psychopharmacology, 2006, 187, 405-414.	3.1	43
68	The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology, 2006, 188, 425-444.	3.1	441
69	Potentiation of Low Dose Ketamine Effects by Naltrexone: Potential Implications for the Pharmacotherapy of Alcoholism. Neuropsychopharmacology, 2006, 31, 1793-1800.	5.4	48
70	Delta-9-tetrahydrocannabinol effects in schizophrenia: Implications for cognition, psychosis, and addiction. Biological Psychiatry, 2005, 57, 594-608.	1.3	524
71	The Psychotomimetic Effects of Intravenous Delta-9-Tetrahydrocannabinol in Healthy Individuals: Implications for Psychosis. Neuropsychopharmacology, 2004, 29, 1558-1572.	5.4	895
72	Cannabinoids and the cerebellum: a potential role in the development of psychosis., 0,, 144-159.		1

#	Article	IF	CITATIONS
73	The neural basis for the acute effects of cannabis on learning and psychosis. , 0, , 160-168.		1
74	Does cannabis use cause schizophrenia? The epidemiological evidence. , 0, , 169-183.		О
75	Postmortem studies of the brain cannabinoid system in schizophrenia., 0,, 184-192.		O
76	The acute effects of cannabinoids in patients with psychotic illness., 0,, 198-209.		0