
Joseph R Hume

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11002922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRPC1 and Orai1 interact with STIM1 and mediate capacitative Ca ²⁺ entry caused by acute hypoxia in mouse pulmonary arterial smooth muscle cells. American Journal of Physiology - Cell Physiology, 2012, 303, C1156-C1172.	4.6	41
2	TRPC1 and Orai1 interact with STIM1 and Mediate Capacitative Calcium Entry Activated by Acute Hypoxia in Mouse Pulmonary Arterial Smooth Muscle Cells. FASEB Journal, 2012, 26, 700.5.	0.5	0
3	TRPC1, STIM1 and Orai1 Mediate Capacitative Calcium Entry Activated by Acute Hypoxia in Mouse Pulmonary Arterial Smooth Muscle Cells. FASEB Journal, 2011, 25, 1102.6.	0.5	0
4	Orai1 interacts with STIM1 and mediates capacitative Ca ²⁺ entry in mouse pulmonary arterial smooth muscle cells. American Journal of Physiology - Cell Physiology, 2010, 299, C1079-C1090.	4.6	44
5	CLC-3 Chloride Channels in the Pulmonary Vasculature. Advances in Experimental Medicine and Biology, 2010, 661, 237-247.	1.6	10
6	The Contribution of TRPC1 and STIM1 to Capacitative Ca2+ Entry in Pulmonary Artery. Advances in Experimental Medicine and Biology, 2010, 661, 123-135.	1.6	18
7	Cardiac-specific, inducible ClC-3 gene deletion eliminates native volume-sensitive chloride channels and produces myocardial hypertrophy in adult mice. Journal of Molecular and Cellular Cardiology, 2010, 48, 211-219.	1.9	43
8	Caffeine inhibits InsP3 responses and capacitative calcium entry in canine pulmonary arterial smooth muscle cells. Vascular Pharmacology, 2009, 50, 89-97.	2.1	13
9	TRPC1 and STIM1 mediate capacitative Ca ²⁺ entry in mouse pulmonary arterial smooth muscle cells. Journal of Physiology, 2009, 587, 2429-2442.	2.9	91
10	CARDIACâ€5PECIFIC OVEREXPRESSION OF THE HUMAN SHORT CLCâ€3 CHLORIDE CHANNEL ISOFORM IN MICE Clinical and Experimental Pharmacology and Physiology, 2009, 36, 386-393.	1.9	15
11	TRPC1 Mediates Capacitative Calcium Entry through Activation of STIM1 in Mouse Pulmonary Arterial Smooth Muscle Cells. FASEB Journal, 2009, 23, 999.10.	0.5	0
12	Cell culture alters Ca2+ entry pathways activated by store-depletion or hypoxia in canine pulmonary arterial smooth muscle cells. American Journal of Physiology - Cell Physiology, 2008, 294, C313-C323.	4.6	36
13	TRPC1 and STIM1 Mediate Capacitative Calcium Entry in Mouse Pulmonary Arterial Smooth Muscle Cells. FASEB Journal, 2008, 22, 965.23.	0.5	0
14	Disruption of the Actin Assembly and Microtubules Induces Export Trafficking and Activation of Human Short ClCâ€3 in Cosâ€7 Cells. FASEB Journal, 2008, 22, 933.8.	0.5	0
15	Hypotonic Activation of Short ClC3 Isoform Is Modulated by Direct Interaction between Its Cytosolic C-terminal Tail and Subcortical Actin Filaments. Journal of Biological Chemistry, 2007, 282, 16871-16877.	3.4	22
16	Inhibition of Ryanodine Receptors by 4-(2-Aminopropyl)-3,5-dichloro- <i>N</i> , <i>N</i> -dimethylaniline (FLA 365) in Canine Pulmonary Arterial Smooth Muscle Cells. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 381-390.	2.5	7
17	Actin Filaments Interact with the Cytosolic Tails and Regulate Hypotonic Activation of ClCâ€3. FASEB Journal, 2007, 21, A963.	0.5	0
18	Reorganization of Intracellular Ca ²⁺ Stores Caused by Cell Culture Does Not Prevent Hypoxicâ€Induced Rise in [Ca ²⁺] _i in Canine Pulmonary Arterial Smooth Muscle Cells. FASEB Journal, 2007, 21, A923.	0.5	0

Јоѕерн R Ниме

#	Article	IF	CITATIONS
19	Altered Properties of Volumeâ€Sensitive Outwardly Rectifying Chloride Currents in Atrial Myocytes from Heart Specific ClCâ€3 Knockout Mice. FASEB Journal, 2007, 21, A963.	0.5	0
20	Low osmolarity transforms ventricular fibrillation from complex to highly organized, with a dominant high-frequency source. Heart Rhythm, 2006, 3, 1210-1220.	0.7	17
21	Role of basal extracellular Ca2+ entry during 5-HT-induced vasoconstriction of canine pulmonary arteries. British Journal of Pharmacology, 2005, 144, 252-264.	5.4	29
22	ClCâ€3 chloride channel is upregulated by hypertrophy and inflammation in rat and canine pulmonary artery. British Journal of Pharmacology, 2005, 145, 5-14.	5.4	64
23	Mobilization of sarcoplasmic reticulum stores by hypoxia leads to consequent activation of capacitative Ca ²⁺ entry in isolated canine pulmonary arterial smooth muscle cells. Journal of Physiology, 2005, 563, 409-419.	2.9	63
24	Molecular mechanisms of regulation of fast-inactivating voltage-dependent transient outward K+current in mouse heart by cell volume changes. Journal of Physiology, 2005, 568, 423-443.	2.9	22
25	Functional role of anion channels in cardiac diseases1. Acta Pharmacologica Sinica, 2005, 26, 265-278.	6.1	65
26	Functional Characterization of Novel Alternatively Spliced ClC-2 ChlorideChannel Variants in theHeart. Journal of Biological Chemistry, 2005, 280, 25871-25880.	3.4	20
27	Hypotonic activation of volume-sensitive outwardly rectifying chloride channels in cultured PASMCs is modulated by SGK. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H533-H544.	3.2	28
28	Altered properties of volumeâ€sensitive osmolyte and anion channels (VSOACs) and membrane protein expression in cardiac and smooth muscle myocytes from <i>Clcn3</i> ^{â€fâ€} mice. Journal of Physiology, 2004, 557, 439-456.	2.9	87
29	P2Y purinergic receptor regulation of CFTR chloride channels in mouse cardiac myocytes. Journal of Physiology, 2004, 556, 727-737.	2.9	24
30	Functional effects of novel anti-ClC-3 antibodies on native volume-sensitive osmolyte and anion channels in cardiac and smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1453-H1463.	3.2	73
31	ClC-3 Is a Fundamental Molecular Component of Volume-sensitive Outwardly Rectifying Clâ^ Channels and Volume Regulation in HeLa Cells and Xenopus laevis Oocytes. Journal of Biological Chemistry, 2002, 277, 40066-40074.	3.4	99
32	Regulation of volume-sensitive outwardly rectifying anion channels in pulmonary arterial smooth muscle cells by PKC. American Journal of Physiology - Cell Physiology, 2002, 283, C1627-C1636.	4.6	31
33	Comparative Capacitative Calcium Entry Mechanisms in Canine Pulmonary and Renal Arterial Smooth Muscle Cells. Journal of Physiology, 2002, 543, 917-931.	2.9	47
34	Regulation of cardiac and smooth muscle Ca ²⁺ channels (Ca _V 1.2a,b) by protein kinases. American Journal of Physiology - Cell Physiology, 2001, 281, C1743-C1756.	4.6	198
35	Heterogeneity of calcium stores and elementary release events in canine pulmonary arterial smooth muscle cells. American Journal of Physiology - Cell Physiology, 2001, 280, C22-C33.	4.6	109
36	Differential expression and alternative splicing of TRP channel genes in smooth muscles. American Journal of Physiology - Cell Physiology, 2001, 280, C1184-C1192.	4.6	133

Јоѕерн R Ниме

#	Article	IF	CITATIONS
37	βâ€Adrenergic receptor stimulation of Lâ€ŧype Ca 2+ channels in rabbit portal vein myocytes involves both αs and βγ G protein subunits. Journal of Physiology, 2001, 531, 105-115.	2.9	27
38	Functional inhibition of native volumeâ€sensitive outwardly rectifying anion channels in muscle cells and Xenopus oocytes by antiâ€ClCâ€3 antibody. Journal of Physiology, 2001, 531, 437-444.	2.9	77
39	Chloride Channels in Heart. , 2001, , 373-388.		Ο
40	Molecular distribution of volume-regulated chloride channels (CIC-2 and CIC-3) in cardiac tissues. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2225-H2233.	3.2	47
41	Anion Transport in Heart. Physiological Reviews, 2000, 80, 31-81.	28.8	208
42	A Novel Anionic Inward Rectifier in Native Cardiac Myocytes. Circulation Research, 2000, 86, .	4.5	58
43	Intracellular cyclic AMP inhibits native and recombinant volumeâ€regulated chloride channels from mammalian heart. Journal of Physiology, 2000, 523, 705-717.	2.9	37
44	Anchoring protein is required for cAMP-dependent stimulation of L-type Ca ²⁺ channels in rabbit portal vein. American Journal of Physiology - Cell Physiology, 1999, 277, C840-C844.	4.6	25
45	A Serine Residue in ClC-3 Links Phosphorylation–Dephosphorylation to Chloride Channel Regulation by Cell Volume. Journal of General Physiology, 1999, 113, 57-70.	1.9	152
46	Purinoceptor-coupled Clâ~'channels in mouse heart: a novel, alternative pathway for CFTR regulation. Journal of Physiology, 1999, 521, 43-56.	2.9	40
47	Regulation of L-type Ca2+channels in rabbit portal vein by G protein αsand βγ subunits. Journal of Physiology, 1999, 517, 109-120.	2.9	29
48	Regulation of Recombinant Cardiac Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channels by Protein Kinase C. Biophysical Journal, 1999, 76, 1972-1987.	0.5	32
49	Functional and molecular expression of volumeâ€regulated chloride channels in canine vascular smooth muscle cells. Journal of Physiology, 1998, 507, 729-736.	2.9	117
50	Modulation of Ca ²⁺ Channels by Cyclic Nucleotide Cross Activation of Opposing Protein Kinases in Rabbit Portal Vein. Circulation Research, 1998, 82, 557-565.	4.5	98
51	Functional and molecular identification of a novel chloride conductance in canine colonic smooth muscle. American Journal of Physiology - Cell Physiology, 1998, 275, C940-C950.	4.6	54
52	Prominent role of intracellular Ca ²⁺ release in hypoxic vasoconstriction of canine pulmonary artery. British Journal of Pharmacology, 1997, 122, 21-30.	5.4	124
53	Molecular identification of a volume-regulated chloride channel. Nature, 1997, 390, 417-421.	27.8	430
54	Evidence That Outwardly Rectifying Cl â^ Channels Underlie Volume-Regulated Cl â^ Currents in Heart. Circulation Research, 1997, 80, 103-113.	4.5	65

4

JOSEPH R HUME

#	Article	IF	CITATIONS
55	Inhibitory Effects of Clibenclamide on Cystic Fibrosis Transmembrane Regulator, Swelling-Activated, and Ca 2+ -Activated Cl â^ Channels in Mammalian Cardiac Myocytes. Circulation Research, 1997, 81, 101-109.	4.5	85
56	Unitary Cl â´' Channels Activated by Cytoplasmic Ca 2+ in Canine Ventricular Myocytes. Circulation Research, 1996, 78, 936-944.	4.5	92
57	Chloride channels in heart. Developments in Cardiovascular Medicine, 1996, , 187-196.	0.1	0
58	A Plethora of Cardiac Chloride Conductances: Molecular Diversity or a Related Gene Family. Journal of Cardiovascular Electrophysiology, 1995, 6, 325-331.	1.7	24
59	Unitary Chloride Channels Activated by Protein Kinase C in Guinea Pig Ventricular Myocytes. Circulation Research, 1995, 76, 317-324.	4.5	42
60	[Ca 2+] i Inhibition of K + Channels in Canine Renal Artery. Circulation Research, 1995, 77, 121-130.	4.5	68
61	[Ca ²⁺] _i Inhibition of K ⁺ Channels in Canine Pulmonary Artery. Circulation Research, 1995, 77, 131-139.	4.5	187
62	Regulation of the cAMP-Dependent Chloride Current in Cardiac Ventricular Myocytes. , 1992, , 221-229.		1
63	<i>Response</i> : Sodium-Calcium Exchange. Science, 1991, 251, 1370-1371.	12.6	0
64	<i>Response</i> : Sodium-Calcium Exchange. Science, 1991, 251, 1370-1371.	12.6	3
65	Histamine Activates the Chloride Current in Cardiac Ventricular Myocytes. Journal of Cardiovascular Electrophysiology, 1990, 1, 309-317.	1.7	30