List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1099891/publications.pdf Version: 2024-02-01

	117453	143772
5,536	34	57
citations	h-index	g-index
171		1000
1/1	1/1	4998
docs citations	times ranked	citing authors
	5,536 citations 171 docs citations	5,536 34 citations h-index 171 171 docs citations 171 times ranked

RANC V RUI

#	Article	IF	CITATIONS
1	Efficient and unbiased modifications of the QUEST threshold method: Theory, simulations, experimental evaluation and practical implementation. Vision Research, 1994, 34, 885-912.	0.7	377
2	Ganglion cell contributions to the rat full-field electroretinogram. Journal of Physiology, 2004, 555, 153-173.	1.3	227
3	The Eye As a Biomarker for Alzheimer's Disease. Frontiers in Neuroscience, 2016, 10, 536.	1.4	172
4	Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer's disease. Nature Communications, 2019, 10, 4227.	5.8	157
5	The Gradient of Retinal Functional Changes during Acute Intraocular Pressure Elevation. , 2005, 46, 202.		145
6	Selective Ganglion Cell Functional Loss in Rats with Experimental Glaucoma. , 2004, 45, 1854.		142
7	Perinatal omega-3 fatty acid deficiency affects blood pressure later in life. Nature Medicine, 2001, 7, 258-259.	15.2	135
8	Paired-Flash Identification of Rod and Cone Dysfunction in the Diabetic Rat. , 2004, 45, 4592.		134
9	Properties of Perimetric Threshold Estimates from Full Threshold, ZEST, and SITA-like Strategies, as Determined by Computer Simulation. , 2003, 44, 4787.		118
10	AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo. , 2016, 57, 3470.		117
11	The role of blood pressure in glaucoma. Australasian journal of optometry, The, 2011, 94, 133-149.	0.6	113
12	Early Inner Retinal Dysfunction in Streptozotocin-Induced Diabetic Rats. , 2008, 49, 3595.		102
13	The effect of docosahexaenoic acid on the electroretinogram of the guinea pig. Lipids, 1996, 31, 65-70.	0.7	96
14	Increased blood pressure later in life may be associated with perinatal nâ^'3 fatty acid deficiency. Lipids, 2003, 38, 459-464.	0.7	90
15	The Rate of Functional Recovery from Acute IOP Elevation. , 2006, 47, 4872.		78
16	Retinal and choroidal TGF-β in the tree shrew model of myopia: Isoform expression, activation and effects on function. Experimental Eye Research, 2009, 88, 458-466.	1.2	74
17	Chronic Ischemia Induces Regional Axonal Damage in Experimental PrimateOptic Neuropathy. JAMA Ophthalmology, 2004, 122, 1517.	2.6	72
18	ACE inhibition salvages the visual loss caused by diabetes. Diabetologia, 2003, 46, 401-408.	2.9	71

#	Article	IF	CITATIONS
19	Dietary Omega 3 Fatty Acids Decrease Intraocular Pressure with Age by Increasing Aqueous Outflow. , 2007, 48, 756.		71
20	Functional Changes in the Retina during and after Acute Intraocular Pressure Elevation in Mice. , 2009, 50, 5732.		71
21	Evidence for the involvement of purinergic P2X7receptors in outer retinal processing. European Journal of Neuroscience, 2006, 24, 7-19.	1.2	67
22	Impact of aging and diet restriction on retinal function during and after acute intraocular pressure injury. Neurobiology of Aging, 2012, 33, 1126.e15-1126.e25.	1.5	66
23	Effect of Dietary n-3 Deficiency on the Electroretinogram in the Guinea Pig. Annals of Nutrition and Metabolism, 1996, 40, 91-98.	1.0	64
24	Rod Photoreceptor Dysfunction in Diabetes: Activation, Deactivation, and Dark Adaptation. , 2006, 47, 3187.		64
25	Effects of dietary n-3 fatty acid deficiency and repletion in the guinea pig retina. Investigative Ophthalmology and Visual Science, 1999, 40, 327-38.	3.3	63
26	Functional and neurochemical development in the normal and degenerating mouse retina. Journal of Comparative Neurology, 2013, 521, 1251-1267.	0.9	60
27	Glutamate metabolic pathways and retinal function. Journal of Neurochemistry, 2009, 111, 589-599.	2.1	55
28	An acute intraocular pressure challenge to assess retinal ganglion cell injury and recovery in the mouse. Experimental Eye Research, 2015, 141, 3-8.	1.2	55
29	Clinical and experimental links between diabetes and glaucoma. Australasian journal of optometry, The, 2011, 94, 4-23.	0.6	54
30	The contribution of cone responses to rat electroretinograms. Clinical and Experimental Ophthalmology, 2001, 29, 193-196.	1.3	53
31	The significance of neuronal and glial cell changes in the rat retina during oxygen-induced retinopathy. Documenta Ophthalmologica, 2010, 120, 67-86.	1.0	53
32	Manganese-Enhanced MRI Studies of Alterations of Intraretinal Ion Demand in Models of Ocular Injury. , 2007, 48, 3796.		52
33	Blood Pressure Modifies Retinal Susceptibility to Intraocular Pressure Elevation. PLoS ONE, 2012, 7, e31104.	1.1	52
34	Anterior Lamina Cribrosa Insertion in Primary Open-Angle Glaucoma Patients and Healthy Subjects. PLoS ONE, 2014, 9, e114935.	1.1	52
35	Idiopathic Bilateral Optic Atrophy in the Rhesus Macaque. , 2005, 46, 3943.		47
36	Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats. Experimental Eye Research, 2009, 88, 1076-1083.	1.2	45

#	Article	IF	CITATIONS
37	Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic retinopathy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	45
38	Extraction and modelling of oscillatory potentials. Documenta Ophthalmologica, 2002, 104, 17-36.	1.0	44
39	Angiotensin typeâ€l receptor inhibition is neuroprotective to amacrine cells in a rat model of retinopathy of prematurity. Journal of Comparative Neurology, 2010, 518, 41-63.	0.9	44
40	Dietary Omega-3 Fatty Acids and Ganglion Cell Function. , 2008, 49, 3586.		43
41	Alterations in photoreceptorâ€bipolar cell signaling following ischemia/reperfusion in the rat retina. Journal of Comparative Neurology, 2007, 505, 131-146.	0.9	42
42	Evidence of Flicker-Induced Functional Hyperaemia in the Smallest Vessels of the Human Retinal Blood Supply. PLoS ONE, 2016, 11, e0162621.	1.1	42
43	The effect of intraocular and intracranial pressure on retinal structure and function in rats. Physiological Reports, 2015, 3, e12507.	0.7	41
44	Increase in mitochondrial DNA mutations impairs retinal function and renders the retina vulnerable to injury. Aging Cell, 2011, 10, 572-583.	3.0	40
45	Local Ganglion Cell Contributions to the Macaque Electroretinogram Revealed by Experimental Nerve Fiber Layer Bundle Defect. , 2003, 44, 4567.		39
46	Retinal Function Loss after Monocarboxylate Transport Inhibition. , 2004, 45, 584.		39
47	Metabolic and functional profiling of the ischemic/reperfused rat retina. Journal of Comparative Neurology, 2007, 505, 114-130.	0.9	39
48	Characterization of the Circumlimbal Suture Model of Chronic IOP Elevation in Mice and Assessment of Changes in Gene Expression of Stretch Sensitive Channels. Frontiers in Neuroscience, 2017, 11, 41.	1.4	39
49	Gene Therapy Intervention in Neovascular Eye Disease: A Recent Update. Molecular Therapy, 2020, 28, 2120-2138.	3.7	38
50	Relationship between the Magnitude of Intraocular Pressure during an Episode of Acute Elevation and Retinal Damage Four Weeks later in Rats. PLoS ONE, 2013, 8, e70513.	1.1	38
51	A Role for Omega-3 Polyunsaturated Fatty Acid Supplements in Diabetic Neuropathy. , 2010, 51, 1755.		36
52	Chronic Ocular Hypertension Induced by Circumlimbal Suture in Rats. , 2015, 56, 2811.		36
53	Inter-ocular and inter-session reliability of the electroretinogram photopic negative response (PhNR) in non-human primates. Experimental Eye Research, 2004, 78, 83-93.	1.2	35
54	Retinal biomarkers provide "insight―into cortical pharmacology and disease. , 2017, 175, 151-177.		34

#	Article	IF	CITATIONS
55	The Contribution of Glycolytic and Oxidative Pathways to Retinal Photoreceptor Function. , 2003, 44, 2708.		32
56	Effect of Repeated IOP Challenge on Rat Retinal Function. , 2008, 49, 3026.		32
57	Retinal Functional and Structural Changes in the 5xFAD Mouse Model of Alzheimer's Disease. Frontiers in Neuroscience, 2020, 14, 862.	1.4	32
58	Development of receptoral responses in pigmented and albino guinea-pigs (Cavia porcellus). , 1999, 99, 151-170.		28
59	Wavelet analysis reveals dynamics of rat oscillatory potentials. Journal of Neuroscience Methods, 2008, 169, 191-200.	1.3	27
60	Comparison of guinea pig electroretinograms measured with bipolar corneal and unipolar intravitreal electrodes. Documenta Ophthalmologica, 1998, 95, 15-34.	1.0	26
61	Metabolic and functional profiling of the normal rat retina. Journal of Comparative Neurology, 2007, 505, 92-113.	0.9	26
62	Using the Electroretinogram to Understand How Intraocular Pressure Elevation Affects the Rat Retina. Journal of Ophthalmology, 2013, 2013, 1-15.	0.6	26
63	Age-Specific Retinal and Cerebral Immunodetection of Amyloid-β Plaques and Oligomers in a Rodent Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 76, 1135-1150.	1.2	26
64	Origin of electroretinogram amplitude growth during light adaptation in pigmented rats. Visual Neuroscience, 2006, 23, 155-167.	0.5	25
65	Simultaneous retinal and cortical visually evoked electrophysiological responses in between migraine attacks. Cephalalgia, 2012, 32, 896-907.	1.8	25
66	Sildenafil alters retinal function in mouse carriers of Retinitis Pigmentosa. Experimental Eye Research, 2014, 128, 43-56.	1.2	25
67	Reactivity in the human retinal microvasculature measured during acute gas breathing provocations. Scientific Reports, 2017, 7, 2113.	1.6	25
68	Uptake, Persistence, and Performance of Weekly Home Monitoring of Visual Field in a Large Cohort of Patients With Glaucoma. American Journal of Ophthalmology, 2021, 223, 286-295.	1.7	25
69	Reversal of functional loss in a rat model of chronic intraocular pressure elevation. Ophthalmic and Physiological Optics, 2017, 37, 71-81.	1.0	24
70	Monocarboxylate transport inhibition alters retinal function and cellular amino acid levels. European Journal of Neuroscience, 2004, 20, 1525-1537.	1.2	23
71	A drug-tunable Flt23k gene therapy for controlled intervention in retinal neovascularization. Angiogenesis, 2021, 24, 97-110.	3.7	23
72	Coupling blood flow and neural function in the retina: a model for homeostatic responses to ocular perfusion pressure challenge. Physiological Reports, 2013, 1, e00055.	0.7	22

#	Article	IF	CITATIONS
73	Utility of Self-Destructing CRISPR/Cas Constructs for Targeted Gene Editing in the Retina. Human Gene Therapy, 2019, 30, 1349-1360.	1.4	22
74	Posttreatment Intervention With <i>Lycium Barbarum</i> Polysaccharides is Neuroprotective in a Rat Model of Chronic Ocular Hypertension. , 2019, 60, 4606.		22
75	Correlating retinal function and amino acid immunocytochemistry following post-mortem ischemia. Experimental Eye Research, 2003, 77, 125-136.	1.2	21
76	Dimethyl sulphoxide dose–response on rat retinal function. Documenta Ophthalmologica, 2009, 119, 199-207.	1.0	21
77	Dietary ï‰-3 Deficiency and IOP Insult Are Additive Risk Factors for Ganglion Cell Dysfunction. Journal of Glaucoma, 2013, 22, 269-277.	0.8	21
78	Age-Related Retinal Function Changes in Albino and Pigmented Rats. , 2011, 52, 8891.		20
79	Post-receptoral contributions to the rat scotopic electroretinogram a-wave. Documenta Ophthalmologica, 2011, 122, 149-156.	1.0	20
80	The Effect of Ageing on Ocular Blood Flow, Oxygen Tension and Retinal Function during and after Intraocular Pressure Elevation. PLoS ONE, 2014, 9, e98393.	1.1	20
81	Retinal Anatomy and Function of the Transthyretin Null Mouse. Experimental Eye Research, 2001, 73, 651-659.	1.2	19
82	AAV-mediated gene delivery of the calreticulin anti-angiogenic domain inhibits ocular neovascularization. Angiogenesis, 2018, 21, 95-109.	3.7	19
83	Test-Retest Reliability of Retinal Oxygen Saturation Measurement. Optometry and Vision Science, 2014, 91, 608-614.	0.6	18
84	Quantitative Spatial and Temporal Analysis of Fluorescein Angiography Dynamics in the Eye. PLoS ONE, 2014, 9, e111330.	1,1	17
85	Glial Cell Contribution to Basal Vessel Diameter and Pressure-Initiated Vascular Responses in Rat Retina. , 2017, 58, 1.		17
86	Reversibility of Retinal Ganglion Cell Dysfunction From Chronic IOP Elevation. , 2019, 60, 3878.		17
87	Development of postreceptoral function in pigmented and albino guinea pigs. Visual Neuroscience, 2001, 18, 605-613.	0.5	16
88	Effect of Acute Intraocular Pressure Challenge on Rat Retinal and Cortical Function. , 2014, 55, 1067.		16
89	Gene Therapy with Endogenous Inhibitors of Angiogenesis for Neovascular Age-Related Macular Degeneration: Beyond Anti-VEGF Therapy. Journal of Ophthalmology, 2015, 2015, 1-12.	0.6	16
90	Detection of retinal and blood AÎ ² oligomers with nanobodies. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12193.	1.2	16

#	Article	IF	CITATIONS
91	Electroretinograms of albino and pigmented guineaâ€pigs (<i>Cavia porcellus</i>). Australian and New Zealand Journal of Ophthalmology, 1998, 26, S98-100.	0.4	15
92	Baseline characteristics of the transient pattern electroretinogram in non-human primates: inter-ocular and inter-session variability. Experimental Eye Research, 2003, 77, 555-566.	1.2	15
93	Identifying Cell Class Specific Losses from Serially Generated Electroretinogram Components. BioMed Research International, 2013, 2013, 1-15.	0.9	15
94	Retinal and Cortical Blood Flow Dynamics Following Systemic Blood-Neural Barrier Disruption. Frontiers in Neuroscience, 2017, 11, 568.	1.4	15
95	A Method Using Goldmann Stimulus Sizes I to V–Measured Sensitivities to Predict Lead Time Gained to Visual Field Defect Detection in Early Glaucoma. Translational Vision Science and Technology, 2018, 7, 17.	1.1	15
96	Potential mechanisms of retinal ganglion cell typeâ€specific vulnerability in glaucoma. Australasian journal of optometry, The, 2020, 103, 562-571.	0.6	15
97	Blocking endothelial apoptosis revascularizes the retina in a model of ischemic retinopathy. Journal of Clinical Investigation, 2020, 130, 4235-4251.	3.9	15
98	Restoring the oxidative balance in age-related diseases – An approach in glaucoma. Ageing Research Reviews, 2022, 75, 101572.	5.0	15
99	Gene–Environment Interactions and Aging Visual Function. Ophthalmology, 2009, 116, 263-269.e1.	2.5	14
100	Conscious Wireless Electroretinogram and Visual Evoked Potentials in Rats. PLoS ONE, 2013, 8, e74172.	1.1	14
101	Experience-dependent development of visual sensitivity in larval zebrafish. Scientific Reports, 2019, 9, 18931.	1.6	14
102	Fos-tau-LacZ mice expose light-activated pathways in the visual system. NeuroImage, 2004, 23, 1027-1038.	2.1	13
103	Chronic Hypertension Increases Susceptibility to Acute IOP Challenge in Rats. Investigative Ophthalmology and Visual Science, 2014, 55, 7888-7895.	3.3	13
104	Glial and neuronal dysfunction in streptozotocin-induced diabetic rats. Journal of Ocular Biology, Diseases, and Informatics, 2011, 4, 42-50.	0.2	12
105	Retinal Oxygen Saturation. Optometry and Vision Science, 2013, 90, 1104-1110.	0.6	12
106	Contrast-based sensorless adaptive optics for retinal imaging. Biomedical Optics Express, 2015, 6, 3577.	1.5	12
107	Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina. Methods in Molecular Biology, 2018, 1715, 113-133.	0.4	12
108	MR-EYE: High-Resolution MRI of the Human Eye and Orbit at Ultrahigh Field (7T). Magnetic Resonance Imaging Clinics of North America, 2021, 29, 103-116.	0.6	12

#	Article	IF	CITATIONS
109	Targeted delivery of LM22A-4 by cubosomes protects retinal ganglion cells in an experimental glaucoma model. Acta Biomaterialia, 2021, 126, 433-444.	4.1	12
110	Multifocal visual evoked potential responses to pattern-reversal, pattern-onset, pattern-offset, and sparse pulse stimuli. Visual Neuroscience, 2009, 26, 227-235.	0.5	11
111	Application of Pattern Recognition Analysis to Optimize Hemifield Asymmetry Patterns for Early Detection of Glaucoma. Translational Vision Science and Technology, 2018, 7, 3.	1.1	11
112	Systemic hypertension is not protective against chronic intraocular pressure elevation in a rodent model. Scientific Reports, 2018, 8, 7107.	1.6	11
113	The Role of Histamine in the Retina: Studies on the Hdc Knockout Mouse. PLoS ONE, 2014, 9, e116025.	1.1	11
114	Susceptibility of Streptozotocin-Induced Diabetic Rat Retinal Function and Ocular Blood Flow to Acute Intraocular Pressure Challenge. , 2013, 54, 2133.		10
115	Early Postnatal Hyperoxia in Mice Leads to Severe Persistent Vitreoretinopathy. , 2016, 57, 6513.		10
116	Age-related changes in the response of retinal structure, function and blood flow to pressure modification in rats. Scientific Reports, 2018, 8, 2947.	1.6	10
117	Therapeutic applications of chelating drugs in iron metabolic disorders of the brain and retina. Journal of Neuroscience Research, 2020, 98, 1889-1904.	1.3	10
118	Response of the Trilaminar Retinal Vessel Network to Intraocular Pressure Elevation in Rat Eyes. , 2020, 61, 2.		10
119	Retinal ganglion cell dysfunction in mice following acute intraocular pressure is exacerbated by P2X7 receptor knockout. Scientific Reports, 2021, 11, 4184.	1.6	10
120	Increased Susceptibility to Injury in Older Eyes. Optometry and Vision Science, 2013, 90, 275-281.	0.6	9
121	Simultaneous Recording of Electroretinography and Visual Evoked Potentials in Anesthetized Rats. Journal of Visualized Experiments, 2016, , .	0.2	9
122	Correspondence Between Behavioral, Physiological, and Anatomical Measurements of Visual Function in Inhibitory Neuron–Ablated Zebrafish. , 2019, 60, 4681.		9
123	The many faces of glaucomatous optic neuropathy. Australasian journal of optometry, The, 2000, 83, 145-160.	0.6	8
124	Effect of stimulus duration in flicker perimetry. Clinical and Experimental Ophthalmology, 2000, 28, 223-226.	1.3	8
125	Postnatal development of flicker sensitivity in guinea pigs. Australasian journal of optometry, The, 2001, 84, 270-275.	0.6	8
126	How Many Subjects are Needed for a Visual Field Normative Database? A Comparison of Ground Truth and Bootstrapped Statistics. Translational Vision Science and Technology, 2018, 7, 1.	1.1	8

#	Article	IF	CITATIONS
127	Electroretinogram Recording in Larval Zebrafish using A Novel Cone-Shaped Sponge-tip Electrode. Journal of Visualized Experiments, 2019, , .	0.2	8
128	Longitudinal outcomes of circumlimbal suture model-induced chronic ocular hypertension in Sprague-Dawley albino rats. Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258, 2715-2728.	1.0	8
129	Electroretinography in streptozotocin diabetic rats following acute intraocular pressure elevation. Graefe's Archive for Clinical and Experimental Ophthalmology, 2013, 251, 529-535.	1.0	7
130	Optic nerve tissue displacement during mild intraocular pressure elevation: its relationship to central corneal thickness and corneal hysteresis. Ophthalmic and Physiological Optics, 2018, 38, 389-399.	1.0	7
131	Ultra-High Field Magnetic Resonance Imaging of the Retrobulbar Optic Nerve, Subarachnoid Space, and Optic Nerve Sheath in Emmetropic and Myopic Eyes. Translational Vision Science and Technology, 2021, 10, 8.	1.1	7
132	Retinal hyperspectral imaging in the 5xFAD mouse model of Alzheimer's disease. Scientific Reports, 2021, 11, 6387.	1.6	7
133	Tyro3 Contributes to Retinal Ganglion Cell Function, Survival and Dendritic Density in the Mouse Retina. Frontiers in Neuroscience, 2020, 14, 840.	1.4	6
134	Characterization of retinal function and structure in the MPTP murine model of Parkinson's disease. Scientific Reports, 2022, 12, 7610.	1.6	6
135	Management of patients with narrow angles and acute angleâ€closure glaucoma. Australasian journal of optometry, The, 1998, 81, 255-266.	0.6	5
136	Provocative intraocular pressure challenge preferentially decreases venous oxygen saturation despite no reduction in blood flow. Ophthalmic and Physiological Optics, 2015, 35, 114-124.	1.0	5
137	Retinal Electrophysiology Is a Viable Preclinical Biomarker for Drug Penetrance into the Central Nervous System. Journal of Ophthalmology, 2016, 2016, 1-12.	0.6	5
138	Intraocular Pressure Induced Retinal Changes Identified Using Synchrotron Infrared Microscopy. PLoS ONE, 2016, 11, e0164035.	1.1	5
139	Increased episcleral venous pressure in a mouse model of circumlimbal suture induced ocular hypertension. Experimental Eye Research, 2021, 202, 108348.	1.2	5
140	Blue Light-Induced Retinal Neuronal Injury and Amelioration by Commercially Available Blue Light-Blocking Lenses. Life, 2022, 12, 243.	1.1	5
141	Optical coherence tomography: seeing the unseen. Australasian journal of optometry, The, 2019, 102, 193-194.	0.6	4
142	Hypercapnia Impairs Vasoreactivity to Changes in Blood Pressure and Intraocular Pressure in Rat Retina. Optometry and Vision Science, 2019, 96, 470-476.	0.6	4
143	Progressive impairments in executive function in the APP/PS1 model of Alzheimer's disease as measured by translatable touchscreen testing. Neurobiology of Aging, 2021, 108, 58-71.	1.5	4
144	Sustained and Transient Contributions to the Rat Dark-Adapted Electroretinogram b-Wave. Journal of Ophthalmology, 2013, 2013, 1-13.	0.6	3

#	Article	IF	CITATIONS
145	Chronic intraocular pressure elevation impairs autoregulatory capacity in streptozotocinâ€induced diabetic rat retina. Ophthalmic and Physiological Optics, 2015, 35, 125-134.	1.0	3
146	Gene Delivery of Calreticulin Anti-Angiogenic Domain Attenuates the Development of Choroidal Neovascularization in Rats. Human Gene Therapy, 2017, 28, 403-414.	1.4	3
147	A Model of Glaucoma Induced by Circumlimbal Suture in Rats and Mice. Journal of Visualized Experiments, 2018, , .	0.2	3
148	Effects of Excess Iron on the Retina: Insights From Clinical Cases and Animal Models of Iron Disorders. Frontiers in Neuroscience, 2021, 15, 794809.	1.4	3
149	Electrodiagnostic methods in vision. Australasian journal of optometry, The, 1996, 79, 131-143.	0.6	2
150	Ocular Phenotype of Relaxin Gene Knockout (Rln ^{-/-}) Mice. Current Eye Research, 2020, 45, 1211-1221.	0.7	2
151	Downregulation of Retinal Connexin 43 in GFAP-Expressing Cells Modifies Vasoreactivity Induced by Perfusion Ocular Pressure Changes. , 2021, 62, 26.		2
152	Efficiently Measuring Magnocellular and Parvocellular Function in Human Clinical Studies. Translational Vision Science and Technology, 2015, 4, 1.	1.1	1
153	Altered Visual Function in a Larval Zebrafish Knockout of Neurodevelopmental Risk Gene <i>pdzk1</i> . , 2021, 62, 29.		1
154	White matter tract conductivity is resistant to wide variations in paranodal structure and myelin thickness accompanying the loss of Tyro3: an experimental and simulated analysis. Brain Structure and Function, 2022, , 1.	1.2	1
155	Authors' Response. Optometry and Vision Science, 2014, 91, e283-e284.	0.6	0
156	Glaucoma: basic science and clinical translation. Ophthalmic and Physiological Optics, 2015, 35, 111-113.	1.0	0
157	Stretch Sensitive Channels in Retinal Blood Flow Autoregulation. , 2016, 57, 5648.		0
158	Implantation and Recording of Wireless Electroretinogram and Visual Evoked Potential in Conscious Rats. Journal of Visualized Experiments, 2016, , .	0.2	0
159	Understanding glaucoma pathogenesis. Clinical and Experimental Ophthalmology, 2017, 45, 853-853.	1.3	0
160	Professor Algis Jonas Vingrys: optometry teacher, research collaborator and innovator. Australasian journal of optometry, The, 2018, 101, 314-317.	0.6	0
161	Effect of hydroxychloroquine or chloroquine and short wavelength light on <i>in vivo</i> retinal function and structure in mouse eyes. Australasian journal of optometry, The, 2023, 106, 523-531.	0.6	0
162	Optimizing retinal thermofusion in retinal detachment repair: achieving instant adhesion without air tamponade. Ophthalmology Science, 2022, , 100179.	1.0	0