
Christina Redfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1099697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nature Structural Biology, 1997, 4, 630-634.	9.7	236
2	A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition. Nature Structural and Molecular Biology, 2008, 15, 849-857.	8.2	222
3	Structural Determinants of Protein Dynamics: Analysis of 15N NMR Relaxation Measurements for Main-Chain and Side-Chain Nuclei of Hen Egg White Lysozyme. Biochemistry, 1995, 34, 4041-4055.	2.5	211
4	Different Subdomains are Most Protected From Hydrogen Exchange in the Molten Globule and Native States of Human α-Lactalbumin. Journal of Molecular Biology, 1995, 253, 651-657.	4.2	200
5	A refined solution structure of hen lysozyme determined using residual dipolar coupling data. Protein Science, 2001, 10, 677-688.	7.6	159
6	Rapid collapse and slow structural reorganisation during the refolding of bovine α-lactalbumin. Journal of Molecular Biology, 1999, 288, 673-688.	4.2	151
7	Structural characterization of a highly–ordered â€ [~] molten globule' at low pH. Nature Structural and Molecular Biology, 1994, 1, 23-29.	8.2	144
8	Analysis of .vphi. and .chi.1 torsion angles for hen lysozyme in solution from proton NMR spin-spin coupling constants. Biochemistry, 1991, 30, 986-996.	2.5	130
9	Alpha-lactalbumin forms a compact molten globule in the absence of disulfide bonds. Nature Structural Biology, 1999, 6, 948-952.	9.7	121
10	NMR analysis of main-chain conformational preferences in an unfolded fibronectin-binding protein. Journal of Molecular Biology, 1997, 274, 152-159.	4.2	120
11	Using nuclear magnetic resonance spectroscopy to study molten globule states of proteins. Methods, 2004, 34, 121-132.	3.8	105
12	Exploitation of an iron transporter for bacterial protein antibiotic import. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12051-12056.	7.1	76
13	Chemical shifts in denatured proteins: resonance assignments for denatured ubiquitin and comparisons with other denatured proteins. Journal of Biomolecular NMR, 2001, 19, 153-165.	2.8	71
14	Characterization of 15N Chemical Shift Anisotropy from Orientation-Dependent Changes to 15N Chemical Shifts in Dilute Bicelle Solutions. Journal of the American Chemical Society, 1999, 121, 7441-7442.	13.7	57
15	Structural Characterisation of the Human α-Lactalbumin Molten Globule at High Temperature. Journal of Molecular Biology, 2003, 330, 1177-1188.	4.2	52
16	The lipoprotein Pal stabilises the bacterial outer membrane during constriction by a mobilisation-and-capture mechanism. Nature Communications, 2020, 11, 1305.	12.8	50
17	Comparison of the denaturant-induced unfolding of the bovine and human α-lactalbumin molten globules 1 1Edited by C. R. Matthews. Journal of Molecular Biology, 2001, 312, 261-273.	4.2	48
18	Structure and Interdomain Interactions of a Hybrid Domain: A Disulphide-Rich Module of the Fibrillin/LTBP Superfamily of Matrix Proteins. Structure, 2009, 17, 759-768.	3.3	44

#	Article	IF	CITATIONS
19	1H-NMR sequential assignments and cation-binding studies of spinach plastocyanin. FEBS Journal, 1987, 170, 279-292.	0.2	43
20	Pressure-induced unfolding of the molten globule of all-Ala Â-lactalbumin. Protein Science, 2003, 12, 66-72.	7.6	43
21	Comparison of four independently determined structures of human recombinant interleukin–4. Nature Structural and Molecular Biology, 1994, 1, 301-310.	8.2	42
22	Structure of the Fibrillin-1 N-Terminal Domains Suggests that Heparan Sulfate Regulates the Early Stages of Microfibril Assembly. Structure, 2013, 21, 1743-1756.	3.3	42
23	Characterization of the unfolded state of bovine α-lactalbumin and comparison with unfolded states of homologous proteins. Protein Science, 2006, 15, 1397-1407.	7.6	38
24	Structural Consequences of Cysteine Substitutions C1977Y and C1977R in Calcium-binding Epidermal Growth Factor-like Domain 30 of Human Fibrillin-1. Journal of Biological Chemistry, 2004, 279, 51258-51265.	3.4	36
25	The Human α-Lactalbumin Molten Globule: Comparison of Structural Preferences at pHÂ2 and pHÂ7. Journal of Molecular Biology, 2009, 394, 351-362.	4.2	35
26	Ca2+-dependent Interface Formation in Fibrillin-1. Journal of Biological Chemistry, 2005, 280, 14076-14084.	3.4	34
27	Defining the Orientation of the15N Shielding Tensor Using15N NMR Relaxation Data for a Protein in Solution. Journal of the American Chemical Society, 1998, 120, 9692-9693.	13.7	33
28	Non-Linear and Flexible Regions of the Human Notch1 Extracellular Domain Revealed by High-Resolution Structural Studies. Structure, 2016, 24, 555-566.	3.3	32
29	Complete Assignment of the ¹ H NMR Spectrum of the Aromatic Residues of Lysozyme. FEBS Journal, 1982, 128, 527-531.	0.2	29
30	Residual dipolar couplings: are multiple independent alignments always possible?. Journal of Biomolecular NMR, 2011, 49, 53-60.	2.8	29
31	Identification of glycine spin systems in 1 H NMR spectra of proteins using multiple quantum coherences. FEBS Letters, 1985, 186, 35-40.	2.8	28
32	Active-site Properties of the Oxidized and Reduced C-terminal Domain of DsbD Obtained by NMR Spectroscopy. Journal of Molecular Biology, 2007, 370, 643-658.	4.2	28
33	Molecular Basis for Jagged-1/Serrate Ligand Recognition by the Notch Receptor. Journal of Biological Chemistry, 2013, 288, 7305-7312.	3.4	28
34	Probing the Heme-Binding Site of the Cytochrome c Maturation Protein CcmE. Biochemistry, 2009, 48, 1820-1828.	2.5	27
35	Consequences of Inducing Intrinsic Disorder in a High-Affinity Protein–Protein Interaction. Journal of the American Chemical Society, 2015, 137, 5252-5255.	13.7	23
36	Asparagine and glutamine side-chain conformation in solution and crystal: A comparison for hen egg-white lysozyme using residual dipolar ouplings. Journal of Biomolecular NMR, 2004, 30, 327-346.	2.8	21

#	Article	IF	CITATIONS
37	Oxidation State-dependent Protein-Protein Interactions in Disulfide Cascades. Journal of Biological Chemistry, 2011, 286, 24943-24956.	3.4	21
38	Local and Global Cooperativity in the Human α-Lactalbumin Molten Globule. Journal of Molecular Biology, 2004, 338, 149-158.	4.2	19
39	Biophysical Characterisation of Fibulin-5 Proteins Associated with Disease. Journal of Molecular Biology, 2010, 401, 605-617.	4.2	19
40	1H-NMR analysis of turkey egg-white lysozyme and comparison with hen egg-white lysozyme. FEBS Journal, 1993, 215, 255-266.	0.2	17
41	Probing subtle differences in the hydrogen exchange behavior of variants of the human α-lactalbumin molten globule using mass spectrometry. Journal of Molecular Biology, 2001, 311, 909-919.	4.2	16
42	Probing the Effect of Temperature on the Backbone Dynamics of the Human α-Lactalbumin Molten Globule. Journal of the American Chemical Society, 2008, 130, 15318-15326.	13.7	16
43	Control of Periplasmic Interdomain Thiol:Disulfide Exchange in the Transmembrane Oxidoreductase DsbD. Journal of Biological Chemistry, 2009, 284, 3219-3226.	3.4	16
44	NMR Analysis Shows That a b-Type Variant of Hydrogenobacter thermophilus Cytochrome c552 Retains Its Native Structure. Journal of Biological Chemistry, 2004, 279, 15177-15182.	3.4	15
45	Characterization of the structure and dynamics of amyloidogenic variants of human lysozyme by NMR spectroscopy. Protein Science, 2001, 10, 2525-2530.	7.6	15
46	The N-Terminal Region of Fibrillin-1 Mediates a Bipartite Interaction with LTBP1. Structure, 2017, 25, 1208-1221.e5.	3.3	15
47	Rapid Collapse into a Molten Globule Is Followed by Simple Two-State Kinetics in the Folding of Lysozyme from Bacteriophage λ. Biochemistry, 2010, 49, 8646-8657.	2.5	14
48	Surface accessibility of aromatic residues in human lysozyme using photochemically induced dynamic nuclear polarization NMR spectroscopy. FEBS Letters, 1985, 185, 248-252.	2.8	13
49	Structural Insights into Notch Receptor-Ligand Interactions. Advances in Experimental Medicine and Biology, 2018, 1066, 33-46.	1.6	13
50	Local frustration determines loop opening during the catalytic cycle of an oxidoreductase. ELife, 2020, 9, .	6.0	13
51	Assignment of resonances in the 1H NMR spectrum of human lysozyme. FEBS Journal, 1985, 153, 383-396.	0.2	11
52	Toxin import through the antibiotic efflux channel TolC. Nature Communications, 2021, 12, 4625.	12.8	11
53	Conformational flexibility of GRASPs and their constituent PDZ subdomains reveals structural basis of their promiscuous interactome. FEBS Journal, 2020, 287, 3255-3272.	4.7	10
54	A method for the estimation of ?1 torsion angles in proteins. Journal of Biomolecular NMR, 1993, 3, 415.	2.8	9

#	Article	IF	CITATIONS
55	The N1317H Substitution Associated with Leber Congenital Amaurosis Results in Impaired Interdomain Packing in Human CRB1 Epidermal Growth Factor-like (EGF) Domains. Journal of Biological Chemistry, 2007, 282, 28807-28814.	3.4	9
56	Probing the urea dependence of residual structure in denatured human α-lactalbumin. Journal of Biomolecular NMR, 2009, 45, 121-131.	2.8	9
57	NMR Spectroscopic and Bioinformatic Analyses of the LTBP1 C-Terminus Reveal a Highly Dynamic Domain Organisation. PLoS ONE, 2014, 9, e87125.	2.5	9
58	The Role of Active Site Flexible Loops in Catalysis and of Zinc in Conformational Stability of Bacillus cereus 569/H/9 β-Lactamase. Journal of Biological Chemistry, 2016, 291, 16124-16137.	3.4	9
59	Structural characterization of KKT4, an unconventional microtubule-binding kinetochore protein. Structure, 2021, 29, 1014-1028.e8.	3.3	9
60	The Dynamics of Lysozyme from Bacteriophage Lambda in Solution Probed by NMR and MD Simulations. ChemBioChem, 2013, 14, 1780-1788.	2.6	8
61	Nuclear Overhauser effects and the assignment of the proton NMR spectra of proteins. FEBS Letters, 1984, 176, 307-312.	2.8	7
62	An Extended Active-site Motif Controls the Reactivity of the Thioredoxin Fold. Journal of Biological Chemistry, 2014, 289, 8681-8696.	3.4	7
63	The CcmC–CcmE interaction during cytochrome c maturation by System I is driven by protein–protein and not protein–heme contacts. Journal of Biological Chemistry, 2018, 293, 16778-16790.	3.4	7
64	¹⁵ N NMR Relaxation Data Reveal Significant Chemical Exchange Broadening in the α-Domain of Human α-Lactalbumin. Biochemistry, 2009, 48, 4031-4039.	2.5	5
65	Backbone 1H, 13C, and 15N resonance assignments for lysozyme from bacteriophage lambda. Biomolecular NMR Assignments, 2010, 4, 111-114.	0.8	5
66	1H, 13C and 15N assignments of the four N-terminal domains of human fibrillin-1. Biomolecular NMR Assignments, 2014, 8, 75-80.	0.8	5
67	1H, 13C and 15N assignments of EGF domains 4 to 7 of human Notch-1. Biomolecular NMR Assignments, 2015, 9, 275-279.	0.8	5
68	Bacterial Expression and In Vitro Refolding of Limited Fragments of the Notch Receptor and Its Ligands. Methods in Molecular Biology, 2014, 1187, 193-208.	0.9	5
69	The structural basis for high affinity binding of α1-acid glycoprotein to the potent antitumor compound UCN-01. Journal of Biological Chemistry, 2021, 297, 101392.	3.4	5
70	1H, 15N and 13C assignments of the carboxy-terminal domain of the transmembrane electron transfer protein DsbD. Journal of Biomolecular NMR, 2002, 24, 359-360.	2.8	4
71	1H, 13C and 15N resonance assignments for the oxidized and reduced states of the N-terminal domain of DsbD from Escherichia coli. Biomolecular NMR Assignments, 2012, 6, 163-167.	0.8	4
72	1H, 13C and 15N assignments of EGF domains 8–11 of human Notch-1. Biomolecular NMR Assignments, 2015, 9, 375-379.	0.8	4

#	Article	IF	CITATIONS
73	1H, 13C and 15N resonance assignments for the microtubule-binding domain of the kinetoplastid kinetochore protein KKT4 from Trypanosoma brucei. Biomolecular NMR Assignments, 2020, 14, 309-315.	0.8	4
74	Backbone 1H, 13C and 15N resonance assignment of the C-terminal EGF-cbEGF pair of LTBP1 and flanking residues. Biomolecular NMR Assignments, 2014, 8, 159-163.	0.8	3
75	1H, 13C and 15N resonance assignments for the response regulator CheY3 from Rhodobacter sphaeroides. Biomolecular NMR Assignments, 2016, 10, 373-378.	0.8	3
76	An NMR and MD study of complexes of bacteriophage lambda lysozyme with tetra―and hexaâ€Nâ€acetylchitohexaose. Proteins: Structure, Function and Bioinformatics, 2020, 88, 82-93.	2.6	3
77	Assignment of Protein NMR Spectra Using Heteronuclear NMR—A Tutorial. Biological Magnetic Resonance, 2015, , 1-42.	0.4	3
78	1H, 13C and 15N resonance assignments for the fibrillin-1 EGF2-EGF3-hybrid1-cbEGF1 four-domain fragment. Biomolecular NMR Assignments, 2014, 8, 189-194.	0.8	2
79	Modular, triple-resonance, transmission line DNP MAS probe for 500 MHz/330 GHz. Journal of Magnetic Resonance, 2019, 307, 106573.	2.1	2
80	lain D Campbell 1941–2014. Nature Structural and Molecular Biology, 2014, 21, 427-428.	8.2	1
81	Comparison of the backbone dynamics of wild-type Hydrogenobacter thermophilus cytochrome c 552 and its b-type variant. Journal of Biomolecular NMR, 2015, 62, 221-231.	2.8	1
82	1H, 13C and 15N resonance assignments for the tandem CUE domains from chromatin remodeler SMARCAD1. Biomolecular NMR Assignments, 2019, 13, 261-265.	0.8	1
83	The â€~Shape-Shifter' Peptide from the Disulphide Isomerase PmScsC Shows Context-Dependent Conformational Preferences. Biomolecules, 2021, 11, 642.	4.0	1
84	1H, 13C, and 15N resonance assignments for the tandem PHD finger motifs of human CHD4. Biomolecular NMR Assignments, 2015, 9, 239-242.	0.8	0