Chu-Hsiang Teng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10994075/publications.pdf

Version: 2024-02-01

840776 1058476 23 393 11 14 citations g-index h-index papers 23 23 23 483 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Impact of carrier localization on recombination in InGaN quantum wells and the efficiency of nitride light-emitting diodes: Insights from theory and numerical simulations. Applied Physics Letters, 2017, 111, .	3.3	62
2	Monolithic integration of individually addressable light-emitting diode color pixels. Applied Physics Letters, 2017, 110, 111103.	3.3	50
3	Single photon emission from site-controlled InGaN/GaN quantum dots. Applied Physics Letters, 2013, 103, .	3.3	44
4	Strain-induced red-green-blue wavelength tuning in InGaN quantum wells. Applied Physics Letters, 2016, 108, 071104.	3.3	36
5	Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography. Scientific Reports, 2017, 7, 42962.	3.3	34
6	Elliptical quantum dots as on-demand single photons sources with deterministic polarization states. Applied Physics Letters, 2015, 107, .	3.3	33
7	How much better are InGaN/GaN nanodisks than quantum wellsâ€"Oscillator strength enhancement and changes in optical properties. Applied Physics Letters, 2014, 104, .	3.3	32
8	Site-controlled InGaN/GaN single-photon-emitting diode. Applied Physics Letters, 2016, 108, .	3.3	24
9	Carrier dynamics in site- and structure-controlled InGaN/GaN quantum dots. Physical Review B, 2014, 90, .	3.2	23
10	Plasmonic Enhancement of Single Photon Emission from a Site-Controlled Quantum Dot. ACS Photonics, 2015, 2, 1065-1070.	6.6	22
11	Charge-tunable indium gallium nitride quantum dots. Physical Review B, 2016, 93, .	3.2	11
12	Improving the Radiative Efficiency of InGaN Quantum Dots via an Open Top Cavity. ACS Photonics, 2017, 4, 795-799.	6.6	8
13	Fabrication of nanoscale zero-mode waveguides using microlithography for single molecule sensing. Nanotechnology, 2012, 23, 455301.	2.6	6
14	Mechanisms of inhomogeneous broadening in InGaN dot-in-wire structures. Journal of Applied Physics, 2019, 126, 083104.	2.5	6
15	Monolithically integrated multi-color InGaN/GaN nanopillar light emitting diodes. , 2015, , .		1
16	Semiconductor Single-Photon Emitters with Tunable Polarization Output., 2014,,.		1
17	Site-controlled single photon emitters based on InGaN/GaN quantum dots. , 2012, , .		O
18	Single photon emission from site-controlled InGaN quantum dots up to 90 K., 2013,,.		0

#	Article	IF	CITATIONS
19	Electrically driven single-photon emission from site-controlled InGaN/GaN quantum dots. , 2014, , .		O
20	Reducing inhomogeneity in the dynamic properties of quantum dots via self-aligned plasmonic cavities. Nanotechnology, 2018, 29, 015201.	2.6	0
21	Ultrafast Spontaneous Emission Rate from an InGaN Quantum Dot Coupled to a Silver Plasmonic Cavity. , $2016, , .$		O
22	III-Nitride Semiconductor Single Photon Sources. Series in Optics and Optoelectronics, 2017, , 661-669.	0.0	0
23	Toward scalable III-nitride quantum dot structures for quantum photonics. Semiconductors and Semimetals, 2020, , 1-27.	0.7	0