Anna Osherov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10989389/publications.pdf

Version: 2024-02-01

471509 3,907 28 17 h-index citations papers

g-index 28 28 28 6450 times ranked docs citations citing authors all docs

501196

28

#	Article	IF	Citations
1	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy, 2020, 5, 35-49.	39.5	797
2	Photo-induced halide redistribution in organic–inorganic perovskite films. Nature Communications, 2016, 7, 11683.	12.8	778
3	Direct–indirect character of the bandgap in methylammonium lead iodide perovskite. Nature Materials, 2017, 16, 115-120.	27.5	369
4	Lattice strain causes non-radiative losses in halide perovskites. Energy and Environmental Science, 2019, 12, 596-606.	30.8	343
5	Methylammonium Bismuth Iodide as a Leadâ€Free, Stable Hybrid Organic–Inorganic Solar Absorber. Chemistry - A European Journal, 2016, 22, 2605-2610.	3.3	312
6	Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals. Joule, 2017, 1, 155-167.	24.0	264
7	Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy and Environmental Science, 2017, 10, 236-246.	30.8	230
8	Controllable Perovskite Crystallization via Antisolvent Technique Using Chloride Additives for Highly Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803587.	19.5	221
9	Surface chemistry of electrodeposited Cu2O films studied by XPS. Electrochimica Acta, 2013, 111, 771-778.	5.2	192
10	High Tolerance to Iron Contamination in Lead Halide Perovskite Solar Cells. ACS Nano, 2017, 11, 7101-7109.	14.6	90
11	The Impact of Phase Retention on the Structural and Optoelectronic Properties of Metal Halide Perovskites. Advanced Materials, 2016, 28, 10757-10763.	21.0	65
12	Role of Solution Chemistry in Determining the Morphology and Photoconductivity of Electrodeposited Cuprous Oxide Films. Chemistry of Materials, 2013, 25, 692-698.	6.7	34
13	Chemical epitaxy of semiconductor thin films. MRS Bulletin, 2010, 35, 790-796.	3.5	33
14	All-vacuum-deposited inorganic cesium lead halide perovskite light-emitting diodes. APL Materials, 2020, 8, .	5.1	28
15	Developing a Robust Recombination Contact to Realize Monolithic Perovskite Tandems With Industrially Common p-Type Silicon Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1023-1028.	2.5	27
16	Chemical bath deposited PbS thin films on ZnO nanowires for photovoltaic applications. Thin Solid Films, 2014, 550, 149-155.	1.8	24
17	Chemical solution deposited PbS thin films on Si(100). Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3431-3436.	0.8	22
18	Tunability of the optical band edge in thin PbS films chemically deposited on GaAs(100). Journal of Physics Condensed Matter, 2010, 22, 262002.	1.8	15

#	Article	IF	CITATIONS
19	Graphene–Perovskite Schottky Barrier Solar Cells. Advanced Sustainable Systems, 2018, 2, 1700106.	5.3	12
20	Hetero-Twinning in Chemical Epitaxy of PbS Thin Films on GaAs Substrates. Crystal Growth and Design, 2012, 12, 4006-4011.	3.0	11
21	Influence of ITO Electrode Surface Composition on the Growth and Optoelectronic Properties of Electrodeposited Cu ₂ 0 Thin Films. Journal of Physical Chemistry C, 2013, 117, 24937-24942.	3.1	11
22	Morphology control of perovskite films: a two-step, all solution process for conversion of lead selenide into methylammonium lead iodide. Materials Chemistry Frontiers, 2021, 5, 1410-1417.	5.9	9
23	Two―and threeâ€dimensional composite photonic crystals of macroporous silicon and lead sulfide semiconductor nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1290-1294.	1.8	8
24	A Two-Step, All Solution Process for Conversion of Lead Sulfide to Methylammonium Lead Iodide Perovskite Thin Films. Thin Solid Films, 2020, 714, 138367.	1.8	4
25	Silicon Photonic Crystals Doped with Colloidally Synthesized Lead Salt Semiconductors Nanocrystals. Journal of Nanoscience and Nanotechnology, 2009, 9, 3648-3651.	0.9	3
26	Suspended Graphene Membranes to Control Au Nucleation and Growth. ACS Nano, 2022, 16, 10364-10371.	14.6	3
27	Composite photonic crystal cavities of macro porous silicon and lead sulfide thin films. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1394-1398.	1.8	1
28	Morphology control in chemical solution deposited lead selenide thin films on fluorine-doped tin oxide. Thin Solid Films, 2020, 710, 138256.	1.8	1