
Ines Armando

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1098936/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inverse Salt Sensitivity of Blood Pressure: Mechanisms and Potential Relevance for Prevention of Cardiovascular Disease. Current Hypertension Reports, 2022, 24, 361-374.	3.5	11
2	Dopamine D5 receptor-mediated decreases in mitochondrial reactive oxygen species production are cAMP and autophagy dependent. Hypertension Research, 2021, 44, 628-641.	2.7	13
3	MicroRNA-874-3p/ADAM (A Disintegrin and Metalloprotease) 19 Mediates Macrophage Activation and Renal Fibrosis After Acute Kidney Injury. Hypertension, 2021, 77, 1613-1626.	2.7	12
4	Mitochondrial DNA-Mediated Inflammation in Acute Kidney Injury and Chronic Kidney Disease. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-12.	4.0	25
5	ADAMs family in kidney physiology and pathology. EBioMedicine, 2021, 72, 103628.	6.1	4
6	Sorting nexin 1 loss results in increased oxidative stress and hypertension. FASEB Journal, 2020, 34, 7941-7957.	0.5	8
7	Dopamine D2 receptor modulates Wnt expression and control of cell proliferation. Scientific Reports, 2019, 9, 16861.	3.3	23
8	Estradiol stimulates cell proliferation via classic estrogen receptor-alpha and G protein-coupled estrogen receptor-1 in human renal tubular epithelial cell primary cultures. Biochemical and Biophysical Research Communications, 2019, 512, 170-175.	2.1	11
9	Antihypertensive effect of etamicastat in dopamine D2 receptor-deficient mice. Hypertension Research, 2018, 41, 489-498.	2.7	9
10	Nephron segment-specific gene expression using AAV vectors. Biochemical and Biophysical Research Communications, 2018, 497, 19-24.	2.1	27
11	Angiotensin II AT2 Receptors Contribute to Regulate the Sympathoadrenal and Hormonal Reaction to Stress Stimuli. Cellular and Molecular Neurobiology, 2018, 38, 85-108.	3.3	11
12	Loss of renal SNX5 results in impaired IDE activity and insulin resistance in mice. Diabetologia, 2018, 61, 727-737.	6.3	16
13	Expression Profile of G Proteinâ€Coupled Receptor 37L1 in mouse. FASEB Journal, 2018, 32, 755.6.	0.5	0
14	Dopamine D2 receptor decreases the toxic effects of aristolochic acid in human renal proximal tubule cells FASEB Journal, 2018, 32, 617.4.	0.5	0
15	Increased renal oxidative stress in salt-sensitive human GRK4γ486V transgenic mice. Free Radical Biology and Medicine, 2017, 106, 80-90.	2.9	18
16	Gastrin stimulates renal dopamine production by increasing the renal tubular uptake of <scp>l</scp> -DOPA. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E1-E10.	3.5	9
17	News From the Heart Natriuretic System. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	0
18	Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure. JCI Insight, 2016, 1, .	5.0	36

#	Article	IF	CITATIONS
19	Common variants of the G protein-coupled receptor type 4 are associated with human essential hypertension and predict the blood pressure response to angiotensin receptor blockade. Pharmacogenomics Journal, 2016, 16, 3-9.	2.0	25
20	Dopamine D ₂ receptors' effects on renal inflammation are mediated by regulation of PP2A function. American Journal of Physiology - Renal Physiology, 2016, 310, F128-F134.	2.7	26
21	Human <i>GRK4γ</i> ^{<i>142V</i>} Variant Promotes Angiotensin II Type I Receptor–Mediated Hypertension via Renal Histone Deacetylase Type 1 Inhibition. Hypertension, 2016, 67, 325-334.	2.7	28
22	The Renin-Angiotensin and Renal Dopaminergic Systems Interact in Normotensive Humans. Journal of the American Society of Nephrology: JASN, 2016, 27, 265-279.	6.1	19
23	The renal dopaminergic system: novel diagnostic and therapeutic approaches in hypertension and kidney disease. Translational Research, 2015, 165, 505-511.	5.0	35
24	Role of Nuclear Factor Erythroid 2–Related Factor 2 in the Oxidative Stress–Dependent Hypertension Associated With the Depletion of DJ-1. Hypertension, 2015, 65, 1251-1257.	2.7	35
25	miR-217 Mediates the Protective Effects of the Dopamine D2 Receptor on Fibrosis in Human Renal Proximal Tubule Cells. Hypertension, 2015, 65, 1118-1125.	2.7	43
26	Increased Renal Oxidative Stress in hGRK4 486V Transgenic Mice. FASEB Journal, 2015, 29, 811.25.	0.5	1
27	Genomics and pharmacogenomics of salt-sensitive hypertension Minireview. Current Hypertension Reviews, 2015, 11, 49-56.	0.9	1
28	Genomics and Pharmacogenomics of Salt-sensitive Hypertension. Current Hypertension Reviews, 2015, 11, 49-56.	0.9	16
29	Dopamine D3 receptor inhibits the ubiquitinâ€specific peptidase 48 to promote NHE3 degradation. FASEB Journal, 2014, 28, 1422-1434.	0.5	23
30	Dopamine D1-like receptors regulate the α1A-adrenergic receptor in human renal proximal tubule cells and D1-like dopamine receptor knockout mice. American Journal of Physiology - Renal Physiology, 2014, 307, F1238-F1248.	2.7	7
31	D ₁ -like dopamine receptors downregulate Na ⁺ -K ⁺ -ATPase activity and increase cAMP production in the posterior gills of the blue crab <i>Callinectes sapidus</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R634-R642.	1.8	6
32	Increased mitochondrial activity in renal proximal tubule cells from young spontaneously hypertensive rats. Kidney International, 2014, 85, 561-569.	5.2	42
33	Single-Nucleotide Polymorphisms of the Dopamine D2 Receptor Increase Inflammation and Fibrosis in Human Renal Proximal Tubule Cells. Hypertension, 2014, 63, e74-80.	2.7	32
34	Sestrin2 Decreases Renal Oxidative Stress, Lowers Blood Pressure, and Mediates Dopamine D 2 Receptor–Induced Inhibition of Reactive Oxygen Species Production. Hypertension, 2014, 64, 825-832.	2.7	50
35	Novel role of sorting nexin 5 in renal D ₁ dopamine receptor trafficking and function: implications for hypertension. FASEB Journal, 2013, 27, 1808-1819.	0.5	34
36	Renal Dopamine Receptors, Oxidative Stress, and Hypertension. International Journal of Molecular Sciences, 2013, 14, 17553-17572.	4.1	67

#	Article	IF	CITATIONS
37	Upregulation of Renal D ₅ Dopamine Receptor Ameliorates the Hypertension in D ₃ Dopamine Receptor–Deficient Mice. Hypertension, 2013, 62, 295-301.	2.7	8
38	Sorting Nexin 1 Loss Results in D5 Dopamine Receptor Dysfunction in Human Renal Proximal Tubule Cells and Hypertension in Mice. Journal of Biological Chemistry, 2013, 288, 152-163.	3.4	27
39	Renal subcapsular infusion of siRNA as a novel method of gene silencing in the kidney. FASEB Journal, 2013, 27, 1217.30.	0.5	0
40	Role of Renal DJ-1 in the Pathogenesis of Hypertension Associated With Increased Reactive Oxygen Species Production. Hypertension, 2012, 59, 446-452.	2.7	70
41	Paraoxonase 2 decreases renal reactive oxygen species production, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of NADPH oxidase. Free Radical Biology and Medicine, 2012, 53, 437-446.	2.9	48
42	Deficient Dopamine D2 Receptor Function Causes Renal Inflammation Independently of High Blood Pressure. PLoS ONE, 2012, 7, e38745.	2.5	37
43	Expression of gastrin in the thin descending limb of Henle's loop in the mouse kidney: a molecular, localization, and functional study. FASEB Journal, 2012, 26, 688.4.	0.5	1
44	Dopamine and Renal Function and Blood Pressure Regulation. , 2011, 1, 1075-1117.		95
45	Lack of Renal Dopamine D5 Receptors Promotes Hypertension. Journal of the American Society of Nephrology: JASN, 2011, 22, 82-89.	6.1	34
46	Human GRK4 variants regulate renal angiotensin AT1 receptor expression. FASEB Journal, 2011, 25, 1041.32.	0.5	0
47	Upregulation of Renal Sodium Transporters in D ₅ Dopamine Receptor–Deficient Mice. Hypertension, 2010, 55, 1431-1437.	2.7	34
48	Dopamine D2 receptor regulation of reactive oxygen species production via paraoxonase 2. FASEB Journal, 2010, 24, 1059.7.	0.5	0
49	PP2R2C is involved in the resensitization of the dopamine D1 receptor in human renal proximal tubule cells FASEB Journal, 2010, 24, 818.1.	0.5	0
50	Renal dopaminergic defect in C57Bl/6J mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R1660-R1669.	1.8	46
51	G Protein-coupled Receptor Kinase 4 (GRK4) Regulates the Phosphorylation and Function of the Dopamine D3 Receptor. Journal of Biological Chemistry, 2009, 284, 21425-21434.	3.4	57
52	Sensing Salt Intake. Hypertension, 2009, 53, 118-119.	2.7	2
53	The regulation of proximal tubular salt transport in hypertension: an update. Current Opinion in Nephrology and Hypertension, 2009, 18, 412-420.	2.0	70
54	Dopamine, kidney, and hypertension: studies in dopamine receptor knockout mice. Pediatric Nephrology, 2008, 23, 2131-2146.	1.7	47

#	Article	IF	CITATIONS
55	Dysregulation of dopamine-dependent mechanisms as a determinant of hypertension: studies in dopamine receptor knockout mice. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H551-H569.	3.2	77
56	Angiotensin II AT ₁ receptor blockade selectively enhances brain AT ₂ receptor expression, and abolishes the cold-restraint stress-induced increase in tyrosine hydroxylase mRNA in the locus coeruleus of spontaneously hypertensive rats. Stress, 2008, 11, 457-466.	1.8	48
57	Estrogen Reduces Aldosterone, Upregulates Adrenal Angiotensin II AT ₂ Receptors and Normalizes Adrenomedullary Fra-2 in Ovariectomized Rats. Neuroendocrinology, 2008, 88, 276-286.	2.5	56
58	Effects of Decreased Renal Cortical Expression of G Protein-Coupled Receptor Kinase 4 and Angiotensin Type 1 Receptors in Rats. Hypertension Research, 2008, 31, 1455-1464.	2.7	14
59	Dopamine 5 receptor mediates Ang II type 1 receptor degradation via a ubiquitin-proteasome pathway in mice and human cells. Journal of Clinical Investigation, 2008, 118, 2180-9.	8.2	72
60	The elevated blood pressure of humanGRK4γA142Vtransgenic mice is not associated with increased ROS production. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2083-H2092.	3.2	34
61	Reactive Oxygen Species–Dependent Hypertension in Dopamine D 2 Receptor–Deficient Mice. Hypertension, 2007, 49, 672-678.	2.7	61
62	Angiotensin II AT1 receptor blockade prevents the hypothalamic corticotropin-releasing factor response to isolation stress. Brain Research, 2007, 1142, 92-99.	2.2	70
63	Increased expression of Nox isoforms in conduit vessels of dopamine D2 receptor deficient mice. FASEB Journal, 2007, 21, A447.	0.5	0
64	A Centrally Acting, Anxiolytic Angiotensin II AT1 Receptor Antagonist Prevents the Isolation Stress-Induced Decrease in Cortical CRF1 Receptor and Benzodiazepine Binding. Neuropsychopharmacology, 2006, 31, 1123-1134.	5.4	96
65	Amelioration of Genetic Hypertension by Suppression of Renal G Protein–Coupled Receptor Kinase Type 4 Expression. Hypertension, 2006, 47, 1131-1139.	2.7	61
66	Dopamine is metabolised by different enzymes along the rat nephron. Pflugers Archiv European Journal of Physiology, 2005, 450, 185-191.	2.8	19
67	Estrogen upregulates renal angiotensin II AT1 and AT2 receptors in the rat. Regulatory Peptides, 2005, 124, 7-17.	1.9	104
68	Anti-stress and anti-anxiety effects of centrally acting angiotensin II AT1 receptor antagonists. Regulatory Peptides, 2005, 128, 227-238.	1.9	108
69	Decreased Hypothalamic and Adrenal Angiotensin II Receptor Expression and Adrenomedullary Catecholamines in Transgenic Mice with Impaired Glucocorticoid Receptor Function. Neuroendocrinology, 2004, 80, 171-180.	2.5	8
70	Oral administration of an AT1 receptor antagonist prevents the central effects of angiotensin II in spontaneously hypertensive rats. Brain Research, 2004, 1028, 9-18.	2.2	61
71	Brain Angiotensin II, an Important Stress Hormone: Regulatory Sites and Therapeutic Opportunities. Annals of the New York Academy of Sciences, 2004, 1018, 76-84.	3.8	70
72	Life-Long Serotonin Reuptake Deficiency Results in Complex Alterations in Adrenomedullary Responses to Stress. Annals of the New York Academy of Sciences, 2004, 1018, 99-104.	3.8	23

#	Article	IF	CITATIONS
73	Angiotensin II AT1Receptor Blockade Prolongs the Lifespan of Spontaneously Hypertensive Rats and Reduces Stress-Induced Release of Catecholamines, Glucocorticoids, and Vasopressin. Annals of the New York Academy of Sciences, 2004, 1018, 131-136.	3.8	22
74	Angiotensin II AT1and AT2Receptor Types Regulate Basal and Stress-Induced Adrenomedullary Catecholamine Production through Transcriptional Regulation of Tyrosine Hydroxylase. Annals of the New York Academy of Sciences, 2004, 1018, 302-309.	3.8	31
75	Angiotensin II AT1Receptor Blockade Prevents Gastric Ulcers during Cold-Restraint Stress. Annals of the New York Academy of Sciences, 2004, 1018, 351-355.	3.8	24
76	Anti-inflammatory effects of angiotensin II AT ₁ receptor antagonism prevent stress-induced gastric injury. American Journal of Physiology - Renal Physiology, 2003, 285, G414-G423.	3.4	109
77	The Serotonin Transporter is Required for Stress-Evoked Increases in Adrenal Catecholamine Synthesis and Angiotensin II AT ₂ Receptor Expression. Neuroendocrinology, 2003, 78, 217-225.	2.5	22
78	Angiotensin II AT1 and AT2 Receptors Contribute to Maintain Basal Adrenomedullary Norepinephrine Synthesis and Tyrosine Hydroxylase Transcription. Endocrinology, 2003, 144, 2092-2101.	2.8	47
79	Stress and Angiotensin II: Novel Therapeutic Opportunities. CNS and Neurological Disorders, 2003, 2, 413-419.	4.3	24
80	Estrogen upregulates renal angiotensin II AT ₂ receptors. American Journal of Physiology - Renal Physiology, 2002, 283, F934-F943.	2.7	111
81	Restraint Stress Modulates Brain, Pituitary and Adrenal Expression of Angiotensin II AT _{1A} , AT _{1B} and AT ₂ Receptors. Neuroendocrinology, 2002, 75, 227-240.	2.5	72
82	Exaggerated Adrenomedullary Response to Immobilization in Mice with Targeted Disruption of the Serotonin Transporter Gene. Endocrinology, 2002, 143, 4520-4526.	2.8	113
83	Increased Angiotensin II AT ₁ Receptor Expression in Paraventricular Nucleus and Hypothalamic-Pituitary-Adrenal Axis Stimulation in AT ₂ Receptor Gene Disrupted Mice. Neuroendocrinology, 2002, 76, 137-147.	2.5	33
84	Pharmacological involvement of the calcium channel blocker flunarizine in dopamine transmission at the striatum. Parkinsonism and Related Disorders, 2001, 8, 33-40.	2.2	24
85	Increased AT1 receptors in adrenal gland of AT2 receptor gene-disrupted mice. Regulatory Peptides, 2001, 102, 41-47.	1.9	19
86	Increased AT ₁ receptor expression and mRNA in kidney glomeruli of AT ₂ receptor gene-disrupted mice. American Journal of Physiology - Renal Physiology, 2001, 280, F71-F78.	2.7	24
87	Correlation of increased grooming behavior and motor activity with alterations in nigrostriatal and mesolimbic catecholamines after alpha-melanotropin and neuropeptide glutamine-isoleucine injection in the rat ventral tegmental area. Cellular and Molecular Neurobiology, 2001, 21, 523-533.	3.3	40
88	Candesartan decreases the sympatho-adrenal and hormonal response to isolation stress. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2001, 2, S130-S135.	1.7	3
89	Decreased Tubular Uptake of <i>L</i> -3,4-Dihydroxyphenylalanine in Streptozotocin-Induced Diabetic Rats. Hormone Research in Paediatrics, 2001, 55, 282-287.	1.8	18
90	Peripheral Administration of an Angiotensin II AT1 Receptor Antagonist Decreases the Hypothalamic-Pituitary-Adrenal Response to Isolation Stress. Endocrinology, 2001, 142, 3880-3889.	2.8	131

#	Article	IF	CITATIONS
91	Potential Role of Glycerol Leading to Rat Fructose Hypertension. Hypertension, 1999, 34, 1007-1011.	2.7	8
92	Influence of age on stress responses to metabolic cage housing in rats. Cellular and Molecular Neurobiology, 1999, 19, 625-633.	3.3	24
93	Peripheral catecholamine alterations in adolescents with polycystic ovary syndrome. Clinical Endocrinology, 1998, 49, 221-228.	2.4	42
94	Age-related changes in sympathetic activity: biochemical measurements and target organ responses. Archives of Gerontology and Geriatrics, 1997, 25, 175-186.	3.0	28
95	Turning behavior induced by injections of glutamate receptor antagonists into the substantia nigra of the rat. , 1996, 24, 147-155.		8
96	Stressor predictability influences open field behavior, pain sensitivity and brain MAO inhibitory activity (tribulin) in the rat. Behavioural Brain Research, 1994, 61, 91-95.	2.2	5
97	The stress-induced reduction in monoamine oxidase (MAO) A activity is reversed by benzodiazepines: Role of peripheral benzodiazepine receptors. Cellular and Molecular Neurobiology, 1993, 13, 593-600.	3.3	12
98	Positron emission tomographic imaging of cardiac sympathetic Innervation using 6-[18 F]Fluorodopamine: Initial findings in humans. Journal of the American College of Cardiology, 1993, 22, 1961-1971.	2.8	106
99	Induction of reversible growth retardation and growth hormone deficiency by blockade of norepinephrine synthesis in the rat. European Journal of Endocrinology, 1993, 129, 554-558.	3.7	1
100	Effects of Single or Repeated Immobilization on Release of Norepinephrine and Its Metabolites in the Central Nucleus of the Amygdala in Conscious Rats. Neuroendocrinology, 1993, 57, 626-633.	2.5	64
101	Determination of metanephrines in plasma by liquid chromatography with electrochemical detection. Clinical Chemistry, 1993, 39, 97-103.	3.2	63
102	Noradrenergic activation in the paraventricular nucleus during acute and chronic immobilization stress in rats: an in vivo microdialysis study. Brain Research, 1992, 589, 91-96.	2.2	110
103	Effect of ionizing radiation on sympathetic nerve function in rat parotid glands. Journal of Oral Pathology and Medicine, 1992, 21, 134-137.	2.7	23
104	Plasma dopa responses during stress: dependence on sympathoneural activity and tyrosine hydroxylation. Journal of Pharmacology and Experimental Therapeutics, 1992, 261, 899-909.	2.5	50
105	Method for measuring endogenous 3-O-methyldopa in urine and plasma. Biomedical Applications, 1991, 568, 45-54.	1.7	3
106	Footshock affects heart and brain MAO and MAO inhibitory activity and open field behavior in rats. Pharmacology Biochemistry and Behavior, 1990, 36, 85-88.	2.9	28
107	Effects of exercise on myocardial catecholamine content and ischemic injury in dogs with gradual coronary occlusion. American Heart Journal, 1990, 120, 1278-1284.	2.7	1
108	Repeated (isolation) stress increases tribulin-like activity in the rat. Cellular and Molecular Neurobiology, 1989, 9, 115-122.	3.3	11

#	Article	IF	CITATIONS
109	Further Evidence of Interaction Between Vasodilator β2- and Vasoconstrictor α2-Adrenoceptor–Mediated Responses in Maintaining Vascular Tone in Anesthetized Rats. Journal of Cardiovascular Pharmacology, 1989, 14, 874-880.	1.9	4
110	Pressor Response Induced by Clenbuterol Treatment in Immobilized Normotensive Rats. Journal of Cardiovascular Pharmacology, 1989, 13, 793-798.	1.9	0
111	24 Hour changes in catecholamine content of rat thyroid and submaxillary glands. Journal of Neural Transmission, 1988, 71, 189-194.	2.8	15
112	Stress increases endogenous benzodiazepine receptor ligand-monoamine oxidase inhibitory activity (tribulin) in rat tissues. Journal of Neural Transmission, 1988, 71, 29-37.	2.8	25
113	Distribution of endogenous benzodiazepine receptor ligand-monoamine oxidase inhibitory activity (tribulin) in tissues. Life Sciences, 1986, 38, 2063-2067.	4.3	50
114	Effect of bromocriptine on plasma catecholamines in normal subjects and prolactin-secreting tumor patients. Journal of Endocrinological Investigation, 1986, 9, 223-226.	3.3	1
115	Free and conjugated plasma catecholamines in pheochromocytoma patients with and without sustained hypertension. European Journal of Endocrinology, 1986, 113, 111-117.	3.7	9
116	Exercise increases endogenous urinary monoamine oxidase benzodiazepine receptor ligand inhibitory activity in normal children. Journal of the Autonomic Nervous System, 1984, 11, 95-100.	1.9	14
117	Output of endogenous monoamine oxidase inhibitor in rats: Effect of ethanol, tryptamine and tryptophan. Journal of Neural Transmission, 1983, 56, 85-90.	2.8	2
118	New endogenous benzodiazepine receptor ligand in human urine: Identity with endogenous monoamine oxidase inhibitor?. Life Sciences, 1983, 33, 735-741.	4.3	50
119	Evaluation of sympathetic nervous system and adrenomedullary activity in normal children. Journal of the Autonomic Nervous System, 1983, 8, 57-63.	1.9	16
120	?-Carbolines as selective monoamine oxidase inhibitors:In vivo implications. Journal of Neural Transmission, 1982, 54, 209-218.	2.8	57
121	Catecholamines Levels and Parotid Secretion in Children with Chronic Atopic Dermatitis. Journal of Investigative Dermatology, 1982, 78, 493-497.	0.7	11
122	Pictet-Spengler condensation products, stress and alcoholism: some clinical overtones. Progress in Clinical and Biological Research, 1982, 90, 215-26.	0.2	7