Karen N Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1098858/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. Cell Systems, 2017, 4, 291-305.e7.	2.9	457
2	Evolutionary Genomics of the HAD Superfamily: Understanding the Structural Adaptations and Catalytic Diversity in a Superfamily of Phosphoesterases and Allied Enzymes. Journal of Molecular Biology, 2006, 361, 1003-1034.	2.0	376
3	The Pentacovalent Phosphorus Intermediate of a Phosphoryl Transfer Reaction. Science, 2003, 299, 2067-2071.	6.0	306
4	Phosphoryl group transfer: evolution of a catalytic scaffold. Trends in Biochemical Sciences, 2004, 29, 495-503.	3.7	249
5	An Experimental Approach to Mapping the Binding Surfaces of Crystalline Proteinsâ€. The Journal of Physical Chemistry, 1996, 100, 2605-2611.	2.9	179
6	The Enzyme Function Initiative. Biochemistry, 2011, 50, 9950-9962.	1.2	169
7	Structural Origin of the High Affinity of a Chemically Evolved Lanthanide-Binding Peptide. Angewandte Chemie - International Edition, 2004, 43, 3682-3685.	7.2	158
8	Double-Lanthanide-Binding Tags:  Design, Photophysical Properties, and NMR Applications. Journal of the American Chemical Society, 2007, 129, 7106-7113.	6.6	142
9	The Crystal Structure ofBacillus cereusPhosphonoacetaldehyde Hydrolase:Â Insight into Catalysis of Phosphorus Bond Cleavage and Catalytic Diversification within the HAD Enzyme Superfamilyâ€,‡. Biochemistry, 2000, 39, 10385-10396.	1.2	136
10	Engineering Encodable Lanthanide-Binding Tags into Loop Regions of Proteins. Journal of the American Chemical Society, 2011, 133, 808-819.	6.6	132
11	The 2.1 Ã Structure of Torpedo californica Creatine Kinase Complexed with the ADP-Mg2+â~`NO3-â~`Creatine Transition-State Analogue Complex,. Biochemistry, 2002, 41, 13861-13867.	1.2	129
12	Enzyme Promiscuity: Engine of Evolutionary Innovation. Journal of Biological Chemistry, 2014, 289, 30229-30236.	1.6	125
13	X-ray Crystallographic Structures of D-Xylose Isomerase-Substrate Complexes Position the Substrate and Provide Evidence for Metal Movement during Catalysis. Biochemistry, 1994, 33, 5469-5480.	1.2	124
14	Structures of Clostridium botulinum Neurotoxin Serotype A Light Chain Complexed with Small-Molecule Inhibitors Highlight Active-Site Flexibility. Chemistry and Biology, 2007, 14, 533-542.	6.2	119
15	Panoramic view of a superfamily of phosphatases through substrate profiling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1974-83.	3.3	118
16	Lanthanide-tagged proteins—an illuminating partnership. Current Opinion in Chemical Biology, 2010, 14, 247-254.	2.8	110
17	Caught in the Act: The Structure of Phosphorylatedβ-Phosphoglucomutase fromLactococcus lactisâ€,‡. Biochemistry, 2002, 41, 8351-8359.	1.2	107
18	Exploring the structural origins of cryptic sites on proteins. Proceedings of the National Academy of Sciences of the United States of America. 2018, 115, F3416-F3425	3.3	96

#	Article	IF	CITATIONS
19	Markers of fitness in a successful enzyme superfamily. Current Opinion in Structural Biology, 2009, 19, 658-665.	2.6	94
20	The origin of the electrostatic perturbation in acetoacetate decarboxylase. Nature, 2009, 459, 393-397.	13.7	86
21	Analysis of the Substrate Specificity Loop of the HAD Superfamily Cap Domainâ€,‡. Biochemistry, 2004, 43, 2812-2820.	1.2	83
22	Snapshots of Catalysis:  the Structure of Fructose-1,6-(bis)phosphate Aldolase Covalently Bound to the Substrate Dihydroxyacetone Phosphate,. Biochemistry, 2001, 40, 13868-13875.	1.2	79
23	Isotopic Exchange plus Substrate and Inhibition Kinetics of D-Xylose Isomerase Do Not Support a Proton-Transfer Mechanism. Biochemistry, 1994, 33, 1481-1487.	1.2	78
24	Double-Lanthanide-Binding Tags for Macromolecular Crystallographic Structure Determination. Journal of the American Chemical Society, 2007, 129, 7114-7120.	6.6	78
25	Role of the Divalent Metal Ion in Sugar Binding, Ring Opening, and Isomerization by D-Xylose Isomerase: Replacement of a Catalytic Metal by an Amino Acid. Biochemistry, 1994, 33, 1488-1494.	1.2	76
26	HAD Superfamily Phosphotransferase Substrate Diversification:Â Structure and Function Analysis of HAD Subclass IIB Sugar Phosphatase BT4131â€,‡. Biochemistry, 2005, 44, 8684-8696.	1.2	75
27	The X-ray Crystal Structures of Human α-Phosphomannomutase 1 Reveal the Structural Basis of Congenital Disorder of Glycosylation Type 1a. Journal of Biological Chemistry, 2006, 281, 14918-14926.	1.6	66
28	Inhibition kinetics of acetylcholinesterase with fluoromethyl ketones. Biochemistry, 1989, 28, 8466-8473.	1.2	64
29	Design, Synthesis, and Characterization of a Potent Xylose Isomerase Inhibitor, D-Threonohydroxamic Acid, and High-Resolution X-ray Crystallographic Structure of the Enzyme-Inhibitor Complex. Biochemistry, 1995, 34, 3742-3749.	1.2	63
30	Ligand deconstruction: Why some fragment binding positions are conserved and others are not. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2585-94.	3.3	61
31	The 2.1 Ã Structure of a Cysteine Protease with Proline Specificity from Ginger Rhizome, Zingiber officinale,. Biochemistry, 1999, 38, 11624-11633.	1.2	59
32	Catalytic Features of the Botulinum Neurotoxin A Light Chain Revealed by High Resolution Structure of an Inhibitory Peptide Complex. Biochemistry, 2008, 47, 5736-5745.	1.2	59
33	Structure of a Fructose-1,6-bis(phosphate) Aldolase Liganded to Its Natural Substrate in a Cleavage-Defective Mutant at 2.3 Ã…â€,‡. Biochemistry, 1999, 38, 12655-12664.	1.2	57
34	Chemical Confirmation of a Pentavalent Phosphorane in Complex with β-Phosphoglucomutase. Journal of the American Chemical Society, 2005, 127, 5298-5299.	6.6	57
35	Structure and Activity Analyses of Escherichia coli K-12 NagD Provide Insight into the Evolution of Biochemical Function in the Haloalkanoic Acid Dehalogenase Superfamily,. Biochemistry, 2006, 45, 1183-1193.	1.2	57
36	The catalytic scaffold of the haloalkanoic acid dehalogenase enzyme superfamily acts as a mold for the trigonal bipyramidal transition state. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5687-5692.	3.3	56

#	Article	IF	CITATIONS
37	Structure of human brain fructose 1,6-(bis)phosphate aldolase: Linking isozyme structure with function. Protein Science, 2009, 13, 3077-3084.	3.1	54
38	Evaluation of adamantane hydroxamates as botulinum neurotoxin inhibitors: Synthesis, crystallography, modeling, kinetic and cellular based studies. Bioorganic and Medicinal Chemistry, 2013, 21, 1344-1348.	1.4	53
39	Catalytic Cycling in β-Phosphoglucomutase:  A Kinetic and Structural Analysis,. Biochemistry, 2005, 44, 9404-9416.	1.2	51
40	Quaternary Ammonium Oxidative Demethylation: X-ray Crystallographic, Resonance Raman, and UV–Visible Spectroscopic Analysis of a Rieske-Type Demethylase. Journal of the American Chemical Society, 2012, 134, 2823-2834.	6.6	48
41	X-ray Crystal Structure of the Hypothetical Phosphotyrosine Phosphatase MDP-1 of the Haloacid Dehalogenase Superfamily,. Biochemistry, 2004, 43, 12770-12779.	1.2	47
42	Monotopic Membrane Proteins Join the Fold. Trends in Biochemical Sciences, 2019, 44, 7-20.	3.7	47
43	Encoded loop-lanthanide-binding tags for long-range distance measurements in proteins by NMR and EPR spectroscopy. Journal of Biomolecular NMR, 2015, 63, 275-282.	1.6	44
44	Membrane association of monotopic phosphoglycosyl transferase underpins function. Nature Chemical Biology, 2018, 14, 538-541.	3.9	39
45	Structure of the Thermolabile Mutant Aldolase B, A149P: Molecular Basis of Hereditary Fructose Intolerance. Journal of Molecular Biology, 2005, 347, 135-144.	2.0	38
46	Divergence of Structure and Function in the Haloacid Dehalogenase Enzyme Superfamily: <i>Bacteroides thetaiotaomicron</i> BT2127 Is an Inorganic Pyrophosphatase. Biochemistry, 2011, 50, 8937-8949.	1.2	36
47	Analysis of the Structural Determinants Underlying Discrimination between Substrate and Solvent in β-Phosphoglucomutase Catalysis. Biochemistry, 2009, 48, 1984-1995.	1.2	35
48	Structural Determinants of Substrate Recognition in the HAD Superfamily Member d-glycero-d-manno-Heptose-1,7-bisphosphate Phosphatase (GmhB),. Biochemistry, 2010, 49, 1082-1092.	1.2	35
49	X-ray Crystallographic and Site-directed Mutagenesis Analysis of the Mechanism of Schiff-base Formation in Phosphonoacetaldehyde Hydrolase Catalysis. Journal of Biological Chemistry, 2004, 279, 9353-9361.	1.6	34
50	Investigation of Metal Ion Binding in Phosphonoacetaldehyde Hydrolase Identifies Sequence Markers for Metal-Activated Enzymes of the HAD Enzyme Superfamily,. Biochemistry, 2004, 43, 4990-4997.	1.2	33
51	Design of a Heterospecific, Tetrameric, 21-Residue Miniprotein with Mixed α/β Structure. Structure, 2005, 13, 225-234.	1.6	33
52	Diversification of function in the haloacid dehalogenase enzyme superfamily: The role of the cap domain in hydrolytic phosphoruscarbon bond cleavage. Bioorganic Chemistry, 2006, 34, 394-409.	2.0	32
53	Divergence of Biochemical Function in the HAD Superfamily: <scp>d</scp> - <i>glycero</i> - <scp>d</scp> <i>-manno-</i> Heptose-1,7-bisphosphate Phosphatase (GmhB). Biochemistry, 2010, 49, 1072-1081.	1.2	32
54	Conformational Cycling in β-Phosphoglucomutase Catalysis: Reorientation of the β-d-Glucose 1,6-(Bis)phosphate Intermediateâ€. Biochemistry, 2006, 45, 7818-7824.	1.2	31

#	Article	IF	CITATIONS
55	Chemical-modification rescue assessed by mass spectrometry demonstrates that Î ³ -thia-lysine yields the same activity as lysine in aldolase. Protein Science, 2009, 11, 1591-1599.	3.1	30
56	Structure of the Trehalose-6-phosphate Phosphatase from Brugia malayi Reveals Key Design Principles for Anthelmintic Drugs. PLoS Pathogens, 2014, 10, e1004245.	2.1	30
57	Conservation and Covariance in Small Bacterial Phosphoglycosyltransferases Identify the Functional Catalytic Core. Biochemistry, 2015, 54, 7326-7334.	1.2	30
58	Kinetic Evidence for a Substrate-Induced Fit in Phosphonoacetaldehyde Hydrolase Catalysisâ€. Biochemistry, 2002, 41, 13370-13377.	1.2	28
59	Chirality Holds the Key for Potent Inhibition of the Botulinum Neurotoxin Serotype A Protease. Organic Letters, 2010, 12, 756-759.	2.4	28
60	X-ray Fluorescence Nanotomography of Single Bacteria with a Sub-15 nm Beam. Scientific Reports, 2018, 8, 13415.	1.6	28
61	Interaction Energetics and Druggability of the Protein–Protein Interaction between Kelch-like ECH-Associated Protein 1 (KEAP1) and Nuclear Factor Erythroid 2 Like 2 (Nrf2). Biochemistry, 2020, 59, 563-581.	1.2	28
62	Structure-Function Analysis of 2-Keto-3-deoxy-D-glycero-D-galactonononate-9-phosphate Phosphatase Defines Specificity Elements in Type CO Haloalkanoate Dehalogenase Family Members. Journal of Biological Chemistry, 2009, 284, 1224-1233.	1.6	27
63	Accounting for observed small angle Xâ€ray scattering profile in the protein–protein docking server cluspro. Journal of Computational Chemistry, 2015, 36, 1568-1572.	1.5	27
64	Lanthanide-Binding Tags for 3D X-ray Imaging of Proteins in Cells at Nanoscale Resolution. Journal of the American Chemical Society, 2020, 142, 2145-2149.	6.6	27
65	Spatial Clustering of Isozyme-specific Residues Reveals Unlikely Determinants of Isozyme Specificity in Fructose-1,6-bisphosphate Aldolase. Journal of Biological Chemistry, 2003, 278, 17307-17313.	1.6	26
66	Covalent Docking Predicts Substrates for Haloalkanoate Dehalogenase Superfamily Phosphatases. Biochemistry, 2015, 54, 528-537.	1.2	26
67	Consequences of domain insertion on sequence-structure divergence in a superfold. Proceedings of the United States of America, 2013, 110, E3381-7.	3.3	25
68	New Superfamily Members Identified for Schiff-Base Enzymes Based on Verification of Catalytically Essential Residuesâ€. Biochemistry, 2006, 45, 8546-8555.	1.2	23
69	Structural and mechanistic themes in glycoconjugate biosynthesis at membrane interfaces. Current Opinion in Structural Biology, 2019, 59, 81-90.	2.6	23
70	Inhibition of pig liver esterase by trifluoromethyl ketones: modulators of the catalytic reaction alter inhibition kinetics. Biochemistry, 1989, 28, 135-140.	1.2	22
71	<i>Homo sapiens</i> Dullard Protein Phosphatase Shows a Preference for the Insulin-Dependent Phosphorylation Site of Lipin1. Biochemistry, 2011, 50, 3045-3047.	1.2	22
72	Tailoring Encodable Lanthanideâ€Binding Tags as MRI Contrast Agents. ChemBioChem, 2012, 13, 2567-2574.	1.3	22

#	Article	IF	CITATIONS
73	A Structural Element That Facilitates Proton-Coupled Electron Transfer in Oxalate Decarboxylase. Biochemistry, 2012, 51, 2911-2920.	1.2	22
74	Bioinformatic Analysis of the Flavin-Dependent Amine Oxidase Superfamily: Adaptations for Substrate Specificity and Catalytic Diversity. Journal of Molecular Biology, 2020, 432, 3269-3288.	2.0	21
75	Structural Basis for the Divergence of Substrate Specificity and Biological Function within HAD Phosphatases in Lipopolysaccharide and Sialic Acid Biosynthesis. Biochemistry, 2013, 52, 5372-5386.	1.2	20
76	Substrate Deconstruction and the Nonadditivity of Enzyme Recognition. Journal of the American Chemical Society, 2014, 136, 7374-7382.	6.6	20
77	Structure of a rabbit muscle fructose-1,6-bisphosphate aldolase A dimer variant. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 543-550.	2.5	19
78	Structural Analysis Provides Mechanistic Insight into Nicotine Oxidoreductase from <i>Pseudomonas putida</i> . Biochemistry, 2016, 55, 6595-6598.	1.2	19
79	X-ray structure analysis of a designed oligomeric miniprotein reveals a discrete quaternary architecture. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12183-12188.	3.3	18
80	A cross-over inhibitor of the botulinum neurotoxin light chain B: a natural product implicating an exosite mechanism of action. Chemical Communications, 2011, 47, 1713.	2.2	18
81	Assigning the EPR Fine Structure Parameters of the Mn(II) Centers in <i>Bacillus subtilis</i> Oxalate Decarboxylase by Site-Directed Mutagenesis and DFT/MM Calculations. Journal of the American Chemical Society, 2014, 136, 2313-2323.	6.6	17
82	Enzyme Substrate Specificity Conferred by Distinct Conformational Pathways. Journal of the American Chemical Society, 2015, 137, 13876-13886.	6.6	17
83	Catalytic scaffolds for phosphoryl group transfer. Current Opinion in Structural Biology, 2016, 41, 172-179.	2.6	17
84	Glycoconjugate pathway connections revealed by sequence similarity network analysis of the monotopic phosphoglycosyl transferases. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
85	Human Symbiont Bacteroides thetaiotaomicron Synthesizes 2-Keto-3-Deoxy-D-Glycero-D- Galacto-Nononic Acid (KDN). Chemistry and Biology, 2008, 15, 893-897.	6.2	16
86	Substrate Binding Mode and Molecular Basis of a Specificity Switch in Oxalate Decarboxylase. Biochemistry, 2016, 55, 2163-2173.	1.2	16
87	Crystallography Coupled with Kinetic Analysis Provides Mechanistic Underpinnings of a Nicotine-Degrading Enzyme. Biochemistry, 2018, 57, 3741-3751.	1.2	16
88	Thermodynamic Analysis Shows Conformational Coupling and Dynamics Confer Substrate Specificity in Fructose-1,6-bisphosphate Aldolase. Biochemistry, 2007, 46, 13010-13018.	1.2	15
89	Binding Energy and Catalysis by <scp>d</scp> -Xylose Isomerase: Kinetic, Product, and X-ray Crystallographic Analysis of Enzyme-Catalyzed Isomerization of (<i>R</i>)-Glyceraldehyde. Biochemistry, 2011, 50, 10170-10181.	1.2	15
90	Metal Ions Effectively Ablate the Action of Botulinum Neurotoxin A. Journal of the American Chemical Society, 2017, 139, 7264-7272.	6.6	15

#	Article	IF	CITATIONS
91	Recapitulating the Binding Affinity of Nrf2 for KEAP1 in a Cyclic Heptapeptide, Guided by NMR, X-ray Crystallography, and Machine Learning. Journal of the American Chemical Society, 2021, 143, 3779-3793.	6.6	15
92	Mutation of Nonessential Cysteines Shows That the NF-κB Essential Modulator Forms a Constitutive Noncovalent Dimer That Binds IκB Kinase-β with High Affinity. Biochemistry, 2013, 52, 9141-9154.	1.2	14
93	Divergence of Substrate Specificity and Function in the <i>Escherichia coli</i> Hotdog-fold Thioesterase Paralogs Ydil and YbdB. Biochemistry, 2014, 53, 4775-4787.	1.2	14
94	Intein-mediated purification of a recombinantly expressed peptide. Chemical Communications, 2004, , 2412.	2.2	13
95	Catch and Anchor Approach To Combat Both Toxicity and Longevity of Botulinum Toxin A. Journal of Medicinal Chemistry, 2020, 63, 11100-11120.	2.9	13
96	Crystallization and preliminary X-ray diffraction studies of β-phosphoglucomutase fromLactococcus lactus. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 324-326.	2.5	12
97	Structure and Catalysis in the <i>Escherichia coli</i> Hotdog-fold Thioesterase Paralogs Ydil and YbdB. Biochemistry, 2014, 53, 4788-4805.	1.2	12
98	The Xâ€ray crystallographic structure and specificity profile of HAD superfamily phosphohydrolase BT1666: Comparison of paralogous functions in <i>B. thetaiotaomicron</i> . Proteins: Structure, Function and Bioinformatics, 2011, 79, 3099-3107.	1.5	11
99	Disulfide-Mediated Stabilization of the lκB Kinase Binding Domain of NF-κB Essential Modulator (NEMO). Biochemistry, 2014, 53, 7929-7944.	1.2	11
100	The surprising structural and mechanistic dichotomy of membrane-associated phosphoglycosyl transferases. Biochemical Society Transactions, 2021, 49, 1189-1203.	1.6	11
101	Coâ€evolution of HAD phosphatase and hotdogâ€fold thioesterase domain function in the menaquinoneâ€pathway fusion proteins BF1314 and PG1653. FEBS Letters, 2013, 587, 2851-2859.	1.3	9
102	Small molecule metalloprotease inhibitor with inÂvitro, exÂvivo and inÂvivo efficacy against botulinum neurotoxin serotype A. Toxicon, 2017, 137, 36-47.	0.8	9
103	Conformational dynamics and alignment properties of loop lanthanide-binding-tags (LBTs) studied in interleukin-1β. Journal of Biomolecular NMR, 2017, 68, 187-194.	1.6	8
104	Mechanism of Substrate Recognition and Catalysis of the Haloalkanoic Acid Dehalogenase Family Member α-Phosphoglucomutase. Biochemistry, 2018, 57, 4504-4517.	1.2	8
105	Fast Kinetics Reveals Rate-Limiting Oxidation and the Role of the Aromatic Cage in the Mechanism of the Nicotine-Degrading Enzyme NicA2. Biochemistry, 2021, 60, 259-273.	1.2	8
106	Aspirin — now we can see it. Nature Medicine, 1995, 1, 882-883.	15.2	7
107	Structural Basis of the Molecular Switch between Phosphatase and Mutase Functions of Human Phosphomannomutase 1 under Ischemic Conditions. Biochemistry, 2018, 57, 3480-3492.	1.2	7
108	A Central Region of NF-κB Essential Modulator Is Required for IKKβ-Induced Conformational Change and for Signal Propagation. Biochemistry, 2019, 58, 2906-2920.	1.2	7

#	Article	IF	CITATIONS
109	Enzymatic synthesis of radiolabeled phosphonoacetaldehyde. Analytical Biochemistry, 2003, 322, 233-237.	1.1	6
110	The Xâ€ray crystallographic structure and activity analysis of a <i>Pseudomonasâ€</i> specific subfamily of the HAD enzyme superfamily evidences a novel biochemical function. Proteins: Structure, Function and Bioinformatics, 2008, 70, 197-207.	1.5	5
111	Neutron diffraction studies towards deciphering the protonation state of catalytic residues in the bacterial KDN9P phosphatase. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1015-1019.	0.7	5
112	The Birth of Genomic Enzymology: Discovery of the Mechanistically Diverse Enolase Superfamily. Biochemistry, 2021, 60, 3515-3528.	1.2	5
113	Crystallization and preliminary crystallographic analysis of phosphonoacetaldehyde hydrolase. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 206-209.	2.5	4
114	Form finds function. Nature Chemical Biology, 2007, 3, 452-453.	3.9	3
115	Structure-guided approach for detecting large domain inserts in protein sequences as illustrated using the haloacid dehalogenase superfamily. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1896-1906.	1.5	3
116	Use of Crystallography and Molecular Modeling for the Inhibition of the Botulinum Neurotoxin A Protease. ACS Medicinal Chemistry Letters, 2021, 12, 1318-1324.	1.3	3
117	Structural Analysis of Binding Determinants of <i>Salmonella typhimurium</i> Trehalose-6-phosphate Phosphatase Using Ground-State Complexes. Biochemistry, 2020, 59, 3247-3257.	1.2	2
118	Crystallization of Liganded Phosphatases in the HAD Superfamily. Methods in Enzymology, 2018, 607, 157-184.	0.4	1
119	Catalytic Mechanism of the Hotdogâ€Fold Thioesterase PA1618 Revealed by Xâ€ray Structure Determination of a Substrateâ€Bound Oxygen Ester Analogue Complex. ChemBioChem, 2017, 18, 1935-1943.	1.3	0
120	Preface. Methods in Enzymology, 2018, 607, xv-xviii.	0.4	0
121	Structural Enzymology in the Haloalkanoic Acid Dehalogenase Superfamily. FASEB Journal, 2007, 21, .	0.2	0
122	Identifying and negotiating with potential collaborators. FASEB Journal, 2011, 25, 207.3.	0.2	0
123	Ligand Binding and Conformational Change Coupling in the HAD Superfamily. FASEB Journal, 2013, 27, 998.8.	0.2	0
124	The nature of sequence and structure divergence in the Haloalkanoate Dehalogenase SuperFamily (HADSF). FASEB Journal, 2013, 27, 797.2.	0.2	0
125	The structural basis of the secondary function of PMM1 in the presence of IMP. FASEB Journal, 2013, 27, 998.5.	0.2	0
126	Ultra Highâ€ŧhroughput Screening Uncovers New Activities in Phosphatases of the Haloalkanoic Acid Dehalogenase Superfamily (HADSF). FASEB Journal, 2013, 27, 571.1.	0.2	0

#	Article	IF	CITATIONS
127	Ligandâ€Induced Conformational Change Propagates NEMOâ€Mediated NFâ€kB Signaling. FASEB Journal, 2015, 29, 563.6.	0.2	0
128	Using M. marinum T6PP as a Model for M. tuberculosis Inhibitor Design. FASEB Journal, 2018, 32, 674.16.	0.2	0