Douglas Roberto Monteiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/109843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 2009, 34, 103-110.	2.5	665
2	Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics, 2018, 7, 46.	3.7	428
3	Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of <i>Candida albicans</i> and <i>Candida glabrata</i> . Biofouling, 2011, 27, 711-719.	2.2	186
4	Silver Distribution and Release from an Antimicrobial Denture Base Resin Containing Silver Colloidal Nanoparticles. Journal of Prosthodontics, 2012, 21, 7-15.	3.7	135
5	Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Letters in Applied Microbiology, 2012, 54, 383-391.	2.2	94
6	Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against <i><scp>C</scp>andida albicans</i> and <i><scp>C</scp>andida glabrata</i> biofilms. Mycoses, 2013, 56, 672-680.	4.0	83
7	The effect of silver nanoparticles and nystatin on mixed biofilms of <i>Candida glabrata</i> and <i>Candida albicans</i> on acrylic. Medical Mycology, 2013, 51, 178-184.	0.7	72
8	Use of Stress Analysis Methods to Evaluate the Biomechanics of Oral Rehabilitation With Implants. Journal of Oral Implantology, 2014, 40, 217-228.	1.0	67
9	Biofilm formation by <i>Candida albicans</i> and <i>Streptococcus mutans</i> in the presence of farnesol: a quantitative evaluation. Biofouling, 2016, 32, 329-338.	2.2	63
10	Silver colloidal nanoparticles: effect on matrix composition and structure of <i>Candida albicans</i> and <i>Candida glabrata</i> biofilms. Journal of Applied Microbiology, 2013, 114, 1175-1183.	3.1	54
11	Relationship between anxiety and chronic orofacial pain of temporomandibular disorder in a group of university students. Journal of Prosthodontic Research, 2011, 55, 154-158.	2.8	51
12	Susceptibility of Candida albicans and Candida glabrata biofilms to silver nanoparticles in intermediate and mature development phases. Journal of Prosthodontic Research, 2015, 59, 42-48.	2.8	50
13	Activity of tyrosol against single and mixed-species oral biofilms. Journal of Applied Microbiology, 2016, 120, 1240-1249.	3.1	50
14	InÂVitro and InÂVivo Toxicity Evaluation ofÂColloidal Silver Nanoparticles Used inÂEndodontic Treatments. Journal of Endodontics, 2016, 42, 953-960.	3.1	50
15	Antibiofilm effect of chlorhexidine-carrier nanosystem based on iron oxide magnetic nanoparticles and chitosan. Colloids and Surfaces B: Biointerfaces, 2019, 174, 224-231.	5.0	42
16	Antifungal activity of tyrosol and farnesol used in combination against <i>Candida</i> species in the planktonic state or forming biofilms. Journal of Applied Microbiology, 2017, 123, 392-400.	3.1	41
17	The role of nicotine, cotinine and caffeine on the electrochemical behavior and bacterial colonization to cp-Ti. Materials Science and Engineering C, 2015, 56, 114-124.	7.3	40
18	Bond strength of denture teeth to acrylic resin: effect of thermocycling and polymerisation methods. Gerodontology, 2008, 25, 237-244.	2.0	37

#	Article	IF	CITATIONS
19	Novel nanocarrier of miconazole based on chitosan-coated iron oxide nanoparticles as a nanotherapy to fight Candida biofilms. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111080.	5.0	37
20	Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm. Materials Science and Engineering C, 2021, 118, 111341.	7.3	37
21	Effect of monomer treatment and polymerisation methods on the bond strength of resin teeth to denture base material. Gerodontology, 2009, 26, 225-231.	2.0	35
22	Effect of tyrosol on adhesion ofCandida albicansandCandida glabratato acrylic surfaces. Medical Mycology, 2015, 53, 656-665.	0.7	31
23	Oral health-related quality of life and satisfaction before and after treatment with complete dentures in a Dental School in Brazil. Journal of Prosthodontic Research, 2013, 57, 36-41.	2.8	27
24	Complete denture wearing and fractures among edentulous patients treated in university clinics. Gerodontology, 2012, 29, e728-34.	2.0	24
25	Retention Systems to Implant-Supported Craniofacial Prostheses. Journal of Craniofacial Surgery, 2009, 20, 889-891.	0.7	23
26	Silver colloidal nanoparticle stability: influence on Candida biofilms formed on denture acrylic. Medical Mycology, 2014, 52, 627-635.	0.7	22
27	Virulence Factors in Candida albicans and Streptococcus mutans Biofilms Mediated by Farnesol. Indian Journal of Microbiology, 2018, 58, 138-145.	2.7	22
28	Nanosynthesis of Silver-Calcium Glycerophosphate: Promising Association against Oral Pathogens. Antibiotics, 2018, 7, 52.	3.7	22
29	Chitosan Ameliorates Candida auris Virulence in a Galleria mellonella Infection Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	22
30	Complete denture hygiene and nocturnal wearing habits among patients attending the Prosthodontic Department in a Dental University in Brazil. Gerodontology, 2011, 28, 91-96.	2.0	21
31	Effect of synthetic colloidal nanoparticles in acrylic resin of dental use. European Polymer Journal, 2019, 112, 531-538.	5.4	20
32	Posterior partially edentulous jaws, planning a rehabilitation with dental implants. World Journal of Clinical Cases, 2015, 3, 65.	0.8	18
33	Adhesion of Candida biofilm cells to human epithelial cells and polystyrene after treatment with silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014, 114, 410-412.	5.0	17
34	Differential effects of the combination of tyrosol with chlorhexidine gluconate on oral biofilms. Oral Diseases, 2017, 23, 537-541.	3.0	17
35	Antimicrobial, antibiofilm and cytotoxic effects of a colloidal nanocarrier composed by chitosan-coated iron oxide nanoparticles loaded with chlorhexidine. Journal of Dentistry, 2020, 101, 103453.	4.1	17
36	pH changes of mixed biofilms of Streptococcus mutans and Candida albicans after exposure to sucrose solutions in vitro. Archives of Oral Biology, 2018, 90, 9-12.	1.8	16

#	Article	IF	CITATIONS
37	Interactions between <i>Candida albicans</i> and <i>Candida glabrata</i> in biofilms: Influence of the strain type, culture medium and glucose supplementation. Mycoses, 2018, 61, 270-278.	4.0	15
38	Activity of sodium trimetaphosphate, associated or not with fluoride, on dual-species biofilms. Biofouling, 2019, 35, 710-718.	2.2	15
39	Passivity in Implant-Supported Prosthesis. Journal of Craniofacial Surgery, 2010, 21, 2026-2029.	0.7	13
40	Assembly and antifungal effect of a new fluconazole-carrier nanosystem. Future Microbiology, 2020, 15, 273-285.	2.0	13
41	A nanocarrier system that potentiates the effect of miconazole within different interkingdom biofilms. Journal of Oral Microbiology, 2020, 12, 1771071.	2.7	12
42	Novel Colloidal Nanocarrier of Cetylpyridinium Chloride: Antifungal Activities on Candida Species and Cytotoxic Potential on Murine Fibroblasts. Journal of Fungi (Basel, Switzerland), 2020, 6, 218.	3.5	12
43	Effects of Antifungal Carriers Based on Chitosan-Coated Iron Oxide Nanoparticles on Microcosm Biofilms. Antibiotics, 2021, 10, 588.	3.7	12
44	Oral prosthetic microbiology: aspects related to the oral microbiome, surface properties, and strategies for controlling biofilms. Biofouling, 2021, 37, 353-371.	2.2	11
45	Nanocarriers of Miconazole or Fluconazole: Effects on Three-Species Candida Biofilms and Cytotoxic Effects In Vitro. Journal of Fungi (Basel, Switzerland), 2021, 7, 500.	3.5	11
46	Antimicrobial Activity of Compounds Containing Silver Nanoparticles and Calcium Glycerophosphate in Combination with Tyrosol. Indian Journal of Microbiology, 2019, 59, 147-153.	2.7	9
47	Effects of Sodium Trimetaphosphate, Associated or Not with Fluoride, on the Composition and pH of Mixed Biofilms, before and after Exposure to Sucrose. Caries Research, 2020, 54, 358-368.	2.0	9
48	Role of tyrosol on Candida albicans, Candida glabrata and Streptococcus mutans biofilms developed on different surfaces. American Journal of Dentistry, 2017, 30, 35-39.	0.1	8
49	Antimicrobial action of NeoMTA Plus on mono- and dual-species biofilms of Enterococcus faecalis and Candida albicans: An in vitro study. Archives of Oral Biology, 2020, 120, 104925.	1.8	7
50	Effect of sodium hexametaphosphate and fluoride on dual-species biofilms of <i>Candida albicans</i> and <i>Streptococcus mutans</i> . Biofouling, 2021, 37, 939-948.	2.2	7
51	Salivary biomarkers of oxidative stress in children with dental caries: Systematic review and meta-analysis. Archives of Oral Biology, 2022, 139, 105432.	1.8	7
52	Effects of nano-sized sodium hexametaphosphate on the viability, metabolism, matrix composition, and structure of dual-species biofilms of <i>Streptococcus mutans</i> and <i>Candida albicans</i> . Biofouling, 2022, 38, 321-330.	2.2	4
53	The importance of preventing and controlling biofilm in wounds. , 2016, , 79-105.		3
54	Nanostructured Functional Materials: Silver Nanoparticles in Polymer for the Generation of		3

Antimicrobial Characteristics. , 2017, , 271-292.

#	Article	IF	CITATIONS
55	Calcium glycerophosphate and fluoride affect the pH and inorganic composition of dual-species biofilms of Streptococcus mutans and Candida albicans. Journal of Dentistry, 2021, 115, 103844.	4.1	3
56	Silver and phosphate nanoparticles: Antimicrobial approach and caries prevention application. , 2019, , 225-242.		2
57	Effects of sodium hexametaphosphate microparticles or nanoparticles on the growth of saliva-derived microcosm biofilms. Clinical Oral Investigations, 2022, 26, 5733-5740.	3.0	2
58	Silver and Phosphate Nanoparticles. , 2013, , 187-202.		1
59	Clinical Satisfaction and Quality of Ceramic Fixed Dentures. International Journal of Applied Ceramic Technology, 2014, 11, 100-105.	2.1	1
60	Silver Nanoparticles to Fight Candida Coinfection in the Oral Cavity. , 2015, , 283-295.		0
61	Silver and Polyphosphate Nanoparticles. , 0, , 7263-7274.		0
62	An overview of Dentistry during and after the COVID-19 pandemic period in Brazil. Research, Society and Development, 2022, 11, e28011323419.	0.1	0