Anna B Harper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1098156/publications.pdf

Version: 2024-02-01

186265 149698 3,413 60 28 56 h-index citations g-index papers 97 97 97 6361 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	UKESM1: Description and Evaluation of the U.K. Earth System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 4513-4558.	3.8	448
2	Spatiotemporal patterns of terrestrial gross primary production: A review. Reviews of Geophysics, 2015, 53, 785-818.	23.0	432
3	Global carbon budget 2013. Earth System Science Data, 2014, 6, 235-263.	9.9	311
4	Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. New Phytologist, 2013, 200, 350-365.	7.3	247
5	Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nature Communications, 2018, 9, 2938.	12.8	194
6	Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. Geoscientific Model Development, 2016, 9, 2415-2440.	3.6	115
7	Implications of improved representations of plant respiration in a changing climate. Nature Communications, 2017, 8, 1602.	12.8	100
8	Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. New Phytologist, 2020, 226, 1622-1637.	7.3	95
9	Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks. Nature Geoscience, 2018, 11, 568-573.	12.9	74
10	Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nature Communications, 2019, 10, 454.	12.8	68
11	Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity. New Phytologist, 2018, 218, 1462-1477.	7.3	67
12	Increased importance of methane reduction for a 1.5 degree target. Environmental Research Letters, 2018, 13, 054003.	5.2	61
13	Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations. Biogeosciences, 2017, 14, 5053-5067.	3.3	58
14	Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites. Biogeosciences, 2018, 15, 3421-3437.	3.3	55
15	Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand?. Global Change Biology, 2020, 26, 3336-3355.	9.5	50
16	Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types. Geoscientific Model Development, 2018, 11, 2857-2873.	3.6	49
17	Impact of Evapotranspiration on Dry Season Climate in the Amazon Forest*. Journal of Climate, 2014, 27, 574-591.	3.2	45
18	Understanding the uncertainty in global forest carbon turnover. Biogeosciences, 2020, 17, 3961-3989.	3.3	45

#	Article	IF	CITATIONS
19	Gross primary production responses to warming, elevated <scp>CO</scp> ₂ , and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland. Global Change Biology, 2017, 23, 3092-3106.	9.5	43
20	Challenging terrestrial biosphere models with data from the longâ€term multifactor Prairie Heating and <scp>CO</scp> ₂ Enrichment experiment. Global Change Biology, 2017, 23, 3623-3645.	9.5	42
21	Representation of fire, land-use change and vegetation dynamics in the Joint UK Land Environment Simulator vn4.9 (JULES). Geoscientific Model Development, 2019, 12, 179-193.	3.6	41
22	Multi vegetation model evaluation of the Green Sahara climate regime. Geophysical Research Letters, 2017, 44, 6804-6813.	4.0	39
23	The Montreal Protocol protects the terrestrial carbon sink. Nature, 2021, 596, 384-388.	27.8	38
24	INFERNO: a fire and emissions scheme for the UK Met Office's Unified Model. Geoscientific Model Development, 2016, 9, 2685-2700.	3.6	37
25	Conducting robust ecological analyses with climate data. Oikos, 2017, 126, 1533-1541.	2.7	34
26	Role of deep soil moisture in modulating climate in the Amazon rainforest. Geophysical Research Letters, 2010, 37, .	4.0	33
27	Plant Regrowth as a Driver of Recent Enhancement of Terrestrial CO ₂ Uptake. Geophysical Research Letters, 2018, 45, 4820-4830.	4.0	32
28	JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1). Geoscientific Model Development, 2021, 14, 2161-2186.	3.6	32
29	Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses. Geoscientific Model Development, 2015, 8, 1097-1110.	3.6	31
30	Regional carbon fluxes from land use and land cover change in Asia, 1980–2009. Environmental Research Letters, 2016, 11, 074011.	5.2	31
31	Surface ecophysiological behavior across vegetation and moisture gradients in tropical South America. Agricultural and Forest Meteorology, 2013, 182-183, 177-188.	4.8	29
32	Influence of ENSO and the NAO on terrestrial carbon uptake in the Texasâ€northern Mexico region. Global Biogeochemical Cycles, 2015, 29, 1247-1265.	4.9	29
33	Land use change and El Niño-Southern Oscillation drive decadal carbon balance shifts in Southeast Asia. Nature Communications, 2018, 9, 1154.	12.8	28
34	Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale. Earth System Science Data, 2020, 12, 789-804.	9.9	26
35	Shifts in national land use and food production in Great Britain after a climate tipping point. Nature Food, 2020, 1, 76-83.	14.0	25
36	The carbon cycle in Mexico: past, present and future of C stocks and fluxes. Biogeosciences, 2016, 13, 223-238.	3.3	24

#	Article	IF	Citations
37	Evaluation of JULES-crop performance against site observations of irrigated maize from Mead, Nebraska. Geoscientific Model Development, 2017, 10, 1291-1320.	3.6	24
38	The impact of a simple representation of non-structural carbohydrates on the simulated response of tropical forests to drought. Biogeosciences, 2020, 17, 3589-3612.	3.3	24
39	Evaluating GPP and Respiration Estimates Over Northern Midlatitude Ecosystems Using Solarâ€Induced Fluorescence and Atmospheric CO ₂ Measurements. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2976-2997.	3.0	21
40	Representation of dissolved organic carbon in the JULES land surface model (vn4.4_JULES-DOCM). Geoscientific Model Development, 2018, 11, 593-609.	3.6	21
41	Recent progress in understanding climate thresholds. Progress in Physical Geography, 2018, 42, 24-60.	3.2	18
42	JULES-GL7: the Global Land configuration of the Joint UK Land Environment Simulator version 7.0 and 7.2. Geoscientific Model Development, 2020, 13, 483-505.	3.6	17
43	Large changes in Great Britain's vegetation and agricultural land-use predicted under unmitigated climate change. Environmental Research Letters, 2019, 14, 114012.	5.2	15
44	Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements. Geoscientific Model Development, 2021, 14, 3269-3294.	3.6	15
45	Robust Ecosystem Demography (RED version 1.0): a parsimonious approach to modelling vegetation dynamics in Earth system models. Geoscientific Model Development, 2020, 13, 4067-4089.	3.6	14
46	On what scales can GOSAT flux inversions constrain anomalies in terrestrial ecosystems?. Atmospheric Chemistry and Physics, 2019, 19, 13017-13035.	4.9	13
47	Flexible parameter-sparse global temperature time profiles that stabilise at 1.5 and 2.0  °C. Earth System Dynamics, 2017, 8, 617-626.	7.1	12
48	Are strong fire–vegetation feedbacks needed to explain the spatial distribution of tropical tree cover?. Global Ecology and Biogeography, 2016, 25, 16-25.	5.8	11
49	Environmental performance of miscanthus-lime lightweight concrete using life cycle assessment: Application in external wall assemblies. Sustainable Materials and Technologies, 2021, 28, e00253.	3.3	10
50	Dynamic modelling shows substantial contribution of ecosystem restoration to climate change mitigation. Environmental Research Letters, 2021, 16, 124061.	5.2	8
51	A review of planting principles to identify the right place for the right tree for †net zero plus' woodlands: Applying a placeâ€based natural capital framework for sustainable, efficient and equitable (<scp>SEE</scp>) decisions. People and Nature, 2023, 5, 271-301.	3.7	8
52	Reconciling Precipitation with Runoff: Observed Hydrological Change in the Midlatitudes. Journal of Hydrometeorology, 2015, 16, 2403-2420.	1.9	7
53	Are Landâ€Use Change Emissions in Southeast Asia Decreasing or Increasing?. Global Biogeochemical Cycles, 2022, 36, .	4.9	7
54	Surfaceâ€Atmosphere Coupling Scale, the Fate of Water, and Ecophysiological Function in a Brazilian Forest. Journal of Advances in Modeling Earth Systems, 2019, 11, 2523-2546.	3.8	6

#	Article	IF	CITATIONS
55	JULES-BE: representation of bioenergy crops and harvesting in the Joint UK Land Environment Simulator vn5.1. Geoscientific Model Development, 2020, 13, 1123-1136.	3.6	6
56	Regional variation in the effectiveness of methane-based and land-based climate mitigation options. Earth System Dynamics, 2021, 12, 513-544.	7.1	6
57	How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development, 2019, 12, 3207-3240.	3.6	4
58	Simulating Increased Permafrost Peatland Plant Productivity in Response to Belowground Fertilisation Using the JULES Land Surface Model. Nitrogen, 2022, 3, 260-283.	1.3	2
59	Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES. Geoscientific Model Development, 2022, 15, 1913-1929.	3.6	1
60	Uncertain effectiveness of <i>Miscanthus</i> bioenergy expansion for climate change mitigation explored using land surface, agronomic and integrated assessment models. GCB Bioenergy, 0, , .	5. 6	1