
Antonio Alcina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1097918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of the genetic mechanism that associates <i>L3MBTL3</i> to multiple sclerosis. Human Molecular Genetics, 2022, 31, 2155-2163.	2.9	4
2	Targeted resequencing reveals rare variants enrichment in multiple sclerosis susceptibility genes. Human Mutation, 2020, 41, 1308-1320.	2.5	1
3	A New Risk Variant for Multiple Sclerosis at 11q23.3 Locus Is Associated with Expansion of CXCR5+ Circulating Regulatory T Cells. Journal of Clinical Medicine, 2020, 9, 625.	2.4	5
4	Genetics of Multiple Sclerosis. Rare Diseases of the Immune System, 2019, , 183-202.	0.1	0
5	Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease. PLoS Genetics, 2019, 15, e1008180.	3.5	46
6	Splice-site variant in ACSL5: a marker promoting opposing effect on cell viability and protein expression. European Journal of Human Genetics, 2019, 27, 1836-1844.	2.8	9
7	SP140 regulates the expression of immune-related genes associated with multiple sclerosis and other autoimmune diseases by NF-κB inhibition. Human Molecular Genetics, 2018, 27, 4012-4023.	2.9	25
8	Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients. G3: Genes, Genomes, Genetics, 2016, 6, 2073-2079.	1.8	13
9	A splice variant in the ACSL5 gene relates migraine with fatty acid activation in mitochondria. European Journal of Human Genetics, 2016, 24, 1572-1577.	2.8	13
10	The multiple sclerosis-associated regulatory variant rs10877013 affects expression of <i>CYP27B1</i> and <i>VDR</i> under inflammatory or vitamin D stimuli. Multiple Sclerosis Journal, 2016, 22, 999-1006.	3.0	19
11	A comparison of genomic profiles of complex diseases under different models. BMC Medical Genomics, 2015, 9, 3.	1.5	4
12	Influence of the LILRA3 Deletion on Multiple Sclerosis Risk: Original Data and Meta-Analysis. PLoS ONE, 2015, 10, e0134414.	2.5	5
13	A functional variant that affects exon-skipping and protein expression of <i>SP140</i> as genetic mechanism predisposing to multiple sclerosis. Human Molecular Genetics, 2015, 24, 5619-5627.	2.9	43
14	Genome-wide significant association with seven novel multiple sclerosis risk loci. Journal of Medical Genetics, 2015, 52, 848-855.	3.2	34
15	A new risk variant for multiple sclerosis at the immunoglobulin heavy chain locus associates with intrathecal IgG, IgM index and oligoclonal bands. Multiple Sclerosis Journal, 2015, 21, 1104-1111.	3.0	12
16	HERV-W polymorphism in chromosome X is associated with multiple sclerosis risk and with differential expression of MSRV. Retrovirology, 2014, 11, 2.	2.0	30
17	Human Endogenous Retrovirus HERV-Fc1 Association with Multiple Sclerosis Susceptibility: A Meta-Analysis. PLoS ONE, 2014, 9, e90182.	2.5	29
18	MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis. Brain, 2013, 136, 1778-1782	7.6	60

#	Article	IF	CITATIONS
19	Identification of a functional variant in the <i>KIF5A-CYP27B1-METTL1-FAM119B</i> locus associated with multiple sclerosis. Journal of Medical Genetics, 2013, 50, 25-33.	3.2	59
20	Genome-wide significant association ofANKRD55rs6859219 and multiple sclerosis risk. Journal of Medical Genetics, 2013, 50, 140-143.	3.2	34
21	Fine Mapping and Functional Analysis of the Multiple Sclerosis Risk Gene CD6. PLoS ONE, 2013, 8, e62376.	2.5	23
22	Replication study of 10 genes showing evidence for association with multiple sclerosis: validation of TMEM39A, IL12B and CLBL genes. Multiple Sclerosis Journal, 2012, 18, 959-965.	3.0	28
23	Closing the case of <i>APOE</i> in multiple sclerosis: no association with disease risk in over 29â€000 subjects: Figure 1. Journal of Medical Genetics, 2012, 49, 558-562.	3.2	31
24	Role of the small GTPase Rab27a during Herpes simplex virus infection of oligodendrocytic cells. BMC Microbiology, 2012, 12, 265.	3.3	50
25	ANKRD55 and DHCR7 are novel multiple sclerosis risk loci. Genes and Immunity, 2012, 13, 253-257.	4.1	44
26	A cytokine gene screen uncovers SOCS1 as genetic risk factor for multiple sclerosis. Genes and Immunity, 2012, 13, 21-28.	4.1	56
27	Multiple Sclerosis Risk Variant HLA-DRB1*1501 Associates with High Expression of DRB1 Gene in Different Human Populations. PLoS ONE, 2012, 7, e29819.	2.5	100
28	Genome-Wide Association Study of Multiple Sclerosis Confirms a Novel Locus at 5p13.1. PLoS ONE, 2012, 7, e36140.	2.5	46
29	High ACSL5 Transcript Levels Associate with Systemic Lupus Erythematosus and Apoptosis in Jurkat T Lymphocytes and Peripheral Blood Cells. PLoS ONE, 2011, 6, e28591.	2.5	16
30	Genome-wide CTCF distribution in vertebrates defines equivalent sites that aid the identification of disease-associated genes. Nature Structural and Molecular Biology, 2011, 18, 708-714.	8.2	95
31	Members 6B and 14 of the TNF receptor superfamily in multiple sclerosis predisposition. Genes and Immunity, 2011, 12, 145-148.	4.1	14
32	Replication of top markers of a genome-wide association study in multiple sclerosis in Spain. Genes and Immunity, 2011, 12, 110-115.	4.1	36
33	Interaction of PLP with GFP-MAL2 in the Human Oligodendroglial Cell Line HOG. PLoS ONE, 2011, 6, e19388.	2.5	10
34	Validation of the CD6 and TNFRSF1A loci as risk factors for multiple sclerosis in Spain. Journal of Neuroimmunology, 2010, 223, 100-103.	2.3	29
35	Hexose-6-phosphate dehydrogenase: a new risk gene for multiple sclerosis. European Journal of Human Genetics, 2010, 18, 618-620.	2.8	9
36	Tag-SNP analysis of the GFI1-EVI5-RPL5-FAM69 risk locus for multiple sclerosis. European Journal of Human Genetics, 2010, 18, 827-831.	2.8	25

#	Article	IF	CITATIONS
37	Polymorphisms in the IL2, IL2RA and IL2RB genes in multiple sclerosis risk. European Journal of Human Genetics, 2010, 18, 794-799.	2.8	43
38	STAT3 locus in inflammatory bowel disease and multiple sclerosis susceptibility. Genes and Immunity, 2010, 11, 264-268.	4.1	54
39	The autoimmune disease-associated KIF5A, CD226 and SH2B3 gene variants confer susceptibility for multiple sclerosis. Genes and Immunity, 2010, 11, 439-445.	4.1	79
40	CD40: Novel Association with Crohn's Disease and Replication in Multiple Sclerosis Susceptibility. PLoS ONE, 2010, 5, e11520.	2.5	56
41	Characterization of the MAL2-positive compartment in oligodendrocytes. Experimental Cell Research, 2009, 315, 3453-3465.	2.6	15
42	Multiple sclerosis association study with the <i>TENRâ€IL2â€IL21</i> region in a Spanish population. Tissue Antigens, 2009, 74, 244-247.	1.0	20
43	IL2RA/CD25 Gene Polymorphisms: Uneven Association with Multiple Sclerosis (MS) and Type 1 Diabetes (T1D). PLoS ONE, 2009, 4, e4137.	2.5	65
44	The T244I variant of the interleukinâ€7 receptorâ€elpha gene and multiple sclerosis. Tissue Antigens, 2008, 72, 158-161.	1.0	30
45	The high producer variant of the Fc-receptor like-3 (FCRL3) gene is involved in protection against multiple sclerosis. Journal of Neuroimmunology, 2008, 195, 146-150.	2.3	37
46	Interferon regulatory factor 5 (IRF5) gene variants are associated with multiple sclerosis in three distinct populations. Journal of Medical Genetics, 2008, 45, 362-369.	3.2	128
47	IL2RA/CD25 polymorphisms contribute to multiple sclerosis susceptibility. Journal of Neurology, 2007, 254, 682-684.	3.6	50
48	Genomewide study of multiple sclerosis. New England Journal of Medicine, 2007, 357, 2200; author reply 2200-1.	27.0	3
49	The 1858T PTPN22 gene variant contributes to a genetic risk of type 1 diabetes in a Ukrainian population. Tissue Antigens, 2006, 67, 430-433.	1.0	32
50	OAS1 gene haplotype confers susceptibility to multiple sclerosis. Tissue Antigens, 2006, 68, 446-449.	1.0	50
51	IL-2 Biology and Polymorphisms in Multifactorial Conditions. , 2006, , 109-119.		0
52	High susceptibility of a human oligodendroglial cell line to herpes simplex type 1 infection. Journal of NeuroVirology, 2005, 11, 190-198.	2.1	43
53	IFNAR1 and IFNAR2 polymorphisms confer susceptibility to multiple sclerosis but not to interferon-beta treatment response. Journal of Neuroimmunology, 2005, 163, 165-171.	2.3	85
54	Protein tyrosine phosphatase gene (PTPN22) polymorphism in multiple sclerosis. Journal of Neurology, 2005, 252, 994-995.	3.6	38

#	Article	IF	CITATIONS
55	Effects of the multiple sclerosis associated â~'330 promoter polymorphism in IL2 allelic expression. Journal of Neuroimmunology, 2004, 148, 212-217.	2.3	76
56	The Plasmodium falciparum fatty acyl-CoA synthetase family (PfACS) and differential stage-specific expression in infected erythrocytes. Molecular and Biochemical Parasitology, 2003, 126, 109-112.	1.1	28
57	The C-terminal domain of the Plasmodium falciparum acyl-CoA synthetases PfACS1 and PfACS3 functions as ligand for ankyrin. Molecular and Biochemical Parasitology, 2003, 129, 191-198.	1.1	23
58	Lack of association between -384 and 114 IL-2 gene polymorphisms and rheumatoid arthritis. Journal of Rheumatology, 2003, 30, 435-7.	2.0	6
59	Analysis of â^'631 and â^'475 interleukin-2 promoter single nucleotide polymorphisms in multiple sclerosis. International Journal of Immunogenetics, 2002, 29, 389-390.	1.2	7
60	The â^'174/â^'597 promoter polymorphisms in the interleukin-6 gene are not associated with susceptibility to multiple sclerosis. Journal of the Neurological Sciences, 2001, 190, 69-72.	0.6	26
61	Allelic expression and interleukin-2 polymorphisms in multiple sclerosis. Journal of Neuroimmunology, 2001, 119, 101-105.	2.3	59
62	Allelic selection of human IL-2 gene. European Journal of Immunology, 2000, 30, 3516-3521.	2.9	27
63	Induction of Autoantibodies to Different Interleukin-2 Allotypes. Journal of Autoimmunity, 1999, 12, 221-227.	6.5	4
64	The cloning and expression of Pfacs1, a Plasmodium falciparum fatty acyl coenzyme A synthetase-1 targeted to the host erythrocyte cytoplasm. Journal of Molecular Biology, 1999, 291, 59-70.	4.2	39
65	HIGH EXPRESSION IN BACTERIA AND PURIFICATION OF POLYMORPHIC MOUSE INTERLEUKIN 2 MOLECULES. Cytokine, 1998, 10, 249-253.	3.2	8
66	Antiparasitic Effects of the Intra-Golgi Transport Inhibitor Megalomicin. Antimicrobial Agents and Chemotherapy, 1998, 42, 2668-2673.	3.2	20
67	Glutamine and tetrapeptide repeat variations affect the biological activity of different mouse interleukin-2 alleles. European Journal of Immunology, 1996, 26, 1675-1682.	2.9	21
68	Existence of at least five interleukin-2 molecules in different mouse strains. Immunogenetics, 1993, 38, 300-3.	2.4	13
69	A Trypanosoma cruzi membrane protein shares an epitope with a lymphocyte activation antigen and induces crossreactive antibodies Journal of Experimental Medicine, 1992, 175, 1473-1482.	8.5	17
70	A new cDNA sequence for the murine interleukin-2 gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1132, 335-336.	2.4	7
71	The heat-shock response in Trypanosoma cruzi. FEBS Journal, 1988, 172, 121-127.	0.2	22
72	A tubulin-related 55 kilodalton surface antigen recognized by different Trypanosoma cruzi stage-specific monoclonal antibodies from infected mice. Molecular and Biochemical Parasitology, 1988, 29, 181-190.	1.1	21

#	Article	IF	CITATIONS
73	Early and late heat-induced proteins during Leishmania mexicana transformation. Biochemical and Biophysical Research Communications, 1988, 156, 1360-1367.	2.1	7
74	The detection of a spectrin-like protein in with a polyclonal antibody. Cell Biology International Reports, 1988, 12, 979-985.	0.6	11
75	Activity of P536, a UDP-glucose analog, against Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy, 1988, 32, 1412-1415.	3.2	4
76	Effect of heterocyclic analogues of triphenylmethane dyes against Trypanosoma cruzi. Annals of Tropical Medicine and Parasitology, 1988, 82, 235-241.	1.6	11
77	A colorimetric assay based on cell viability for the indirect detection of intracellular replication and killing of Trypanosoma cruzi. Journal of Immunological Methods, 1987, 105, 1-8.	1.4	18
78	Activation by synergism between endotoxin and lymphokines of the mouse macrophage cell line J774 against infection by Trypanosoma cruzi. Parasite Immunology, 1987, 9, 175-186.	1.5	21
79	Stimulation of the trypanocidal and endoribonuclease activities by the interferon induced (2′–5′) oligoadenylates. Molecular and Biochemical Parasitology, 1987, 26, 113-119.	1.1	0
80	A Trypanosoma cruzi monoclonal antibody that recognizes a superficial tubulin-like antigen. Biochemical and Biophysical Research Communications, 1986, 139, 1176-1183.	2.1	13