
A K H Kwan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10974856/publications.pdf Version: 2024-02-01

ΔΚΗΚΜΛΛΝ

#	Article	IF	CITATIONS
1	Concurrent paste replacement and aggregate replacement strategy for producing eco-efficient and low-carbon concrete. Clean Technologies and Environmental Policy, 2022, 24, 2459-2477.	4.1	2
2	Compressive Behavior of Concrete Incorporating Clay Brick Fines Added by Paste Replacement Method. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	9
3	Novel Hybrid Fiber Factor for Hybrid Fiber-Reinforced Concrete. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	12
4	Cement Equivalence of Metakaolin for Workability, Cohesiveness, Strength and Sorptivity of Concrete. Materials, 2020, 13, 1646.	2.9	13
5	Reutilization of Clay Brick Waste in Mortar: Paste Replacement versus Cement Replacement. Journal of Materials in Civil Engineering, 2019, 31, 04019129.	2.9	35
6	Discussion: Use of adiabatic calorimetry for performance assessment of concretes. Advances in Cement Research, 2017, 29, 135-136.	1.6	0
7	Triple Blending with Fly Ash Microsphere and Condensed Silica Fume to Improve Performance of Cement Paste. Journal of Materials in Civil Engineering, 2013, 25, 618-626.	2.9	17
8	Semi-adiabatic Curing Test with Heat Loss Compensation for Evaluation of Adiabatic Temperature Rise of Concrete. HKIE Transactions, 2012, 19, 11-19.	0.1	4
9	Wet packing of blended fine and coarse aggregate. Materials and Structures/Materiaux Et Constructions, 2012, 45, 817-828.	3.1	43
10	Combined effects of water film thickness and paste film thickness on rheology of mortar. Materials and Structures/Materiaux Et Constructions, 2012, 45, 1359-1374.	3.1	85
11	Flexural ductility and deformability of concrete beams incorporating highâ€performance materials. Structural Design of Tall and Special Buildings, 2012, 21, 114-132.	1.9	12
12	Effects of CSF content on rheology and cohesiveness of mortar. Magazine of Concrete Research, 2011, 63, 99-110.	2.0	12
13	Modelling Dowel Action of Discrete Reinforcing Bars in Cracked Concrete Structures. AIP Conference Proceedings, 2010, , .	0.4	3
14	Tension stiffening in concrete beams. Part 2: member analysis. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2010, 163, 29-39.	0.8	8
15	Wet packing of crushed rock fine aggregate. Materials and Structures/Materiaux Et Constructions, 2009, 42, 631-643.	3.1	62
16	Flexural ductility of high-strength concrete columns with minimal confinement. Materials and Structures/Materiaux Et Constructions, 2009, 42, 909-921.	3.1	36
17	Packing density of cementitious materials: part 2—packing and flow of OPCÂ+ÂPFAÂ+ÂCSF. Materials and Structures/Materiaux Et Constructions, 2008, 41, 773-784.	3.1	199
18	Effects of packing density, excess water and solid surface area on flowability of cement paste. Advances in Cement Research, 2008, 20, 1-11.	1.6	111

A K H Kwan

#	Article	IF	CITATIONS
19	Packing density of cementitious materials: measurement and modelling. Magazine of Concrete Research, 2008, 60, 165-175.	2.0	57
20	Rheology of Cement Paste: Role of Excess Water to Solid Surface Area Ratio. Journal of Materials in Civil Engineering, 2008, 20, 189-197.	2.9	116
21	Complete nonlinear response of reinforced concrete beams under cyclic loading. Structural Design of Tall and Special Buildings, 2007, 16, 107-130.	1.9	15
22	Reducing damage to concrete stitches in bridge decks. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2006, 159, 53-62.	0.6	8
23	Design of high-strength concrete beams subjected to small axial loads. Magazine of Concrete Research, 2006, 58, 333-341.	2.0	4
24	Passing ability and segregation stability of self-consolidating concrete with different aggregate proportions. Magazine of Concrete Research, 2006, 58, 447-457.	2.0	32
25	Flexural strength–ductility performance of flanged beam sections cast of high-strength concrete. Structural Design of Tall and Special Buildings, 2004, 13, 29-43.	1.9	16
26	Theoretical study on effect of confinement on flexural ductility of normal and high-strength concrete beams. Magazine of Concrete Research, 2004, 56, 299-309.	2.0	15
27	Minimum flexural ductility design of high-strength concrete beams. Magazine of Concrete Research, 2004, 56, 13-22.	2.0	34
28	Minimum flexural ductility design of high-strength concrete beams. Magazine of Concrete Research, 2004, 56, 13-22.	2.0	8
29	High-performance concrete buildings for the new millennium. Structural Control and Health Monitoring, 2003, 5, 263-273.	0.7	7
30	Safety and Design of Vertical Breakwaters. HKIE Transactions, 2003, 10, 1-7.	0.1	0
31	Effects of Using High-strength Concrete on Flexural Ductility of Reinforced Concrete Beams. HKIE Transactions, 2002, 9, 14-21.	0.1	0
32	Flexural strength and ductility of reinforced concrete beams. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2002, 152, 361-369.	0.8	37
33	Cyclic behaviour of deep reinforced concrete coupling beams. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2002, 152, 283-293.	0.8	43
34	Effects of various shape parameters on packing of aggregate particles. Magazine of Concrete Research, 2001, 53, 91-100.	2.0	88
35	Flexural strength and ductility of reinforced normal- and high-strength concrete beams. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2001, 146, 381-389.	0.8	91
36	Elastic Modulus of Normal- and High-Strength Concrete in Hong Kong. HKIE Transactions, 2001, 8, 10-15.	0.1	2

A K H Kwan

#	Article	IF	CITATIONS
37	Effects of various shape parameters on packing of aggregate particles. Magazine of Concrete Research, 2001, 53, 91-100.	2.0	8
38	Non-planar beam–wall joints in tall building structures. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2000, 140, 73-83.	0.8	8
39	Some Mechanical Properties of High-Strength Concrete in Hong Kong. HKIE Transactions, 2000, 7, 13-18.	0.1	1
40	Tensile Strength and Elastic Modulus of Typical Concrete Made in Hong Kong. HKIE Transactions, 2000, 7, 35-40.	0.1	5
41	Development of High Strength Self Leveling Continue for Hong Kong. HKIE Transactions, 1999, 6, 6-10.	0.1	0
42	Some Parametric Studies on the Production of High Strength Concrete in Hong Kong. HKIE Transactions, 1999, 6, 15-19.	0.1	0
43	Linseed Oil-Based Concrete Surface Treatment for Building and Highway Structures in Hong Kong. HKIE Transactions, 1999, 6, 36-41.	0.1	0
44	Shear Lag in Shear/Core Walls. Journal of Structural Engineering, 1996, 122, 1097-1104.	3.4	37
45	High Performance Grade 75–80 Concrete for In-Situ Construction in Hong Kong. HKIE Transactions, 1994, 1, 29-36.	0.1	0
46	Simple Method for Approximate Analysis of Framed Tube Structures. Journal of Structural Engineering, 1994, 120, 1221-1239.	3.4	75
47	Improved Wideâ€Columnâ€Frame Analogy for Shear/Core Wall Analysis. Journal of Structural Engineering, 1993, 119, 420-437.	3.4	13
48	Mixed Finite Element Method for Analysis of Coupled Shear/Core Walls. Journal of Structural Engineering, 1993, 119, 1388-1401.	3.4	21
49	REFORMULATION OF THE FRAME METHOD Proceedings of the Institution of Civil Engineers: Structures and Buildings, 1992, 94, 103-116.	0.8	3
50	Analysis of Buildings Using Strainâ€Based Element with Rotational DOFs. Journal of Structural Engineering, 1992, 118, 1191-1212.	3.4	15
51	ANALYSIS OF COUPLED WALL/FRAME STRUCTURES BY FRAME METHOD WITH SHEAR DEFORMATION ALLOWED Proceedings of the Institution of Civil Engineers, 1991, 91, 273-297.	0.1	12
52	Effects of Condensed Silica Fume and Superfine Cement on Flowability of Cement Paste. Applied Mechanics and Materials, 0, 121-126, 2695-2700.	0.2	1