Xiangeng Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1097484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal-organomecapto complex-derived mesoporous Co1-xS/N,S-codoped carbon composite for superior lithium ion storage. Journal of Solid State Chemistry, 2022, 306, 122770.	2.9	0
2	Metal–Organic Framework-Activated Full-Color Room-Temperature Phosphorescent Carbon Dots with a Wide Range of Tunable Lifetimes for 4D Coding Applications. Journal of Physical Chemistry C, 2022, 126, 11701-11708.	3.1	27
3	Lasing from solution-processed CsPbBr3 octahedral resonators. Journal of Luminescence, 2021, 229, 117713.	3.1	8
4	Topologicalâ€Distortionâ€Driven Amorphous Spherical Metalâ€Organic Frameworks for Highâ€Quality Singleâ€Mode Microlasers. Angewandte Chemie - International Edition, 2021, 60, 6362-6366.	13.8	23
5	Topologicalâ€Distortionâ€Driven Amorphous Spherical Metalâ€Organic Frameworks for Highâ€Quality Singleâ€Mode Microlasers. Angewandte Chemie, 2021, 133, 6432-6436.	2.0	2
6	Thermally Driven Amorphous rystalline Phase Transition of Carbonized Polymer Dots for Multicolor Roomâ€Temperature Phosphorescence. Advanced Optical Materials, 2021, 9, 2100421.	7.3	38
7	Thermally Driven Amorphousâ€Crystalline Phase Transition of Carbonized Polymer Dots for Multicolor Roomâ€Temperature Phosphorescence (Advanced Optical Materials 16/2021). Advanced Optical Materials, 2021, 9, 2170060.	7.3	5
8	Laterally Engineering Lanthanideâ€MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angewandte Chemie - International Edition, 2021, 60, 24519-24525.	13.8	27
9	Laterally Engineering Lanthanideâ€MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angewandte Chemie, 2021, 133, 24724.	2.0	6
10	Ultralong-lived room temperature phosphorescence from N and P codoped self-protective carbonized polymer dots for confidential information encryption and decryption. Journal of Materials Chemistry C, 2021, 9, 4847-4853.	5.5	44
11	Aggregation-induced room temperature phosphorescent carbonized polymer dots with wide-range tunable lifetimes for optical multiplexing. Journal of Materials Chemistry C, 2021, 9, 6781-6788.	5.5	27
12	2D/3D heterostructure derived from phase transformation of 0D perovskite for random lasing applications with remarkably improved water resistance. Nanoscale, 2021, 13, 18647-18656.	5.6	9
13	Innenrücktitelbild: Laterally Engineering Lanthanideâ€MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding (Angew. Chem. 46/2021). Angewandte Chemie, 2021, 133, 24931-24931.	2.0	0
14	Multicolor Random Lasers Based on Perovskite Quantum Dots Embedded in Intrinsic Pb–MOFs. Journal of Physical Chemistry C, 2021, 125, 25757-25764.	3.1	13
15	Al2O3-Doped MoO3-TeO2 Glass as Anode Materials for Lithium-Ion Batteries with Long-Term Cycle Life. Journal of Electronic Materials, 2020, 49, 271-281.	2.2	14
16	Bright tricolor ultrabroad-band emission carbon dots for white light-emitting diodes with a 96.5 high color rendering index. Journal of Materials Chemistry C, 2020, 8, 1286-1291.	5.5	45
17	Effects of La3+ and Y3+ doping on spatial homogeneity of Ho3+ ions in high silica glass. Optical Materials, 2020, 99, 109608.	3.6	3
18	Hierarchical porous Fe3O4@N-doped carbon nanoellipsoids with excellent electrochemical performance as anode for lithium-ion batteries. Journal of Solid State Chemistry, 2020, 282, 121118.	2.9	9

#	Article	IF	CITATIONS
19	Spatially Responsive Multicolor Lanthanideâ€MOF Heterostructures for Covert Photonic Barcodes. Angewandte Chemie - International Edition, 2020, 59, 19060-19064.	13.8	71
20	Spatially Responsive Multicolor Lanthanideâ€MOF Heterostructures for Covert Photonic Barcodes. Angewandte Chemie, 2020, 132, 19222-19226.	2.0	12
21	Zero-Dimensional Perovskite Open Cavities for Low-Threshold Stimulated Emissions. Journal of Physical Chemistry C, 2020, 124, 25499-25508.	3.1	10
22	Submillimeter-Scale Zero-Dimensional Cs4PbBr6 Perovskite Rods: Fabrication, Optical Properties, and Applications. ACS Applied Electronic Materials, 2020, 2, 2408-2417.	4.3	11
23	Co4N nanoparticles encapsulated in N-doped carbon box as tri-functional catalyst for Zn-air battery and overall water splitting. Applied Catalysis B: Environmental, 2020, 275, 119104.	20.2	159
24	Gramâ€Scale Synthesis of 41% Efficient Singleâ€Component Whiteâ€Lightâ€Emissive Carbonized Polymer Dots with Hybrid Fluorescence/Phosphorescence for White Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 1902688.	11.2	122
25	One-dimensional Mn3O4/NiCo2S4 nanocomposites as high-performance bifunctional electrocatalyst for rechargeable liquid/flexible Zn-air batteries. Journal of Power Sources, 2020, 462, 228162.	7.8	24
26	Dynamically wavelength-tunable random lasers based on metal–organic framework particles. Nanoscale, 2020, 12, 4833-4838.	5.6	19
27	Photonic engineering of superbroadband near-infrared emission in nanoglass composites containing hybrid metal and dielectric nanocrystals. Photonics Research, 2020, 8, 698.	7.0	18
28	Dynamically controlled random lasing with colloidal titanium carbide MXene. Optical Materials Express, 2020, 10, 2304.	3.0	1
29	Study on hydrogen permeation of Niâ€BaZr _{0.1} Ce _{0.7} Y _{0.2} O _{ 3â^' <i>Î</i>} asymmetric cermet membrane. International Journal of Energy Research, 2019, 43, 4959-4966.	4.5	4
30	Effect of low-level Ca2+ substitution at perovskite B site on the properties of BaZr0.8Y0.2O3-δ. Journal of Alloys and Compounds, 2019, 805, 718-724.	5.5	11
31	Hollow NiCo2O4 nanospheres supported on N-doped carbon nanowebs as efficient bifunctional catalyst for rechargeable and flexible Zn-air batteries. Electrochimica Acta, 2019, 319, 1-9.	5.2	23
32	Lasing from Zero-Dimensional Perovskite and Optical Imaging Applications. ACS Photonics, 2019, 6, 3290-3297.	6.6	25
33	Porous Core–Shell CuCo ₂ S ₄ Nanospheres as Anode Material for Enhanced Lithiumâ€ion Batteries. Chemistry - A European Journal, 2019, 25, 885-891.	3.3	37
34	Pr3+ doped oxyfluoride silicate glasses for LEDs. Ceramics International, 2019, 45, 4108-4112.	4.8	14
35	Exploring Timeâ€Resolved Multiphysics of Active Plasmonic Systems with Experimentâ€Based Gain Models. Laser and Photonics Reviews, 2019, 13, 1800071.	8.7	9
36	Ce3+ and Dy3+ doped Ca3(P1-xBxO4)2 phosphors for white light-emitting applications. Journal of Alloys and Compounds, 2019, 775, 1044-1051.	5.5	28

#	Article	IF	CITATIONS
37	Stimulated emission from CsPbBr ₃ quantum dot nanoglass. Optical Materials Express, 2019, 9, 3390.	3.0	14
38	Self-assembled Mn-doped MoS ₂ hollow nanotubes with significantly enhanced sodium storage for high-performance sodium-ion batteries. Inorganic Chemistry Frontiers, 2018, 5, 1587-1593.	6.0	37
39	Dy and Eu activated Ca ₃ B ₂ O ₆ phosphors for near ultravioletâ€based lightâ€emitting diodes. Journal of the American Ceramic Society, 2018, 101, 5461-5468.	3.8	16
40	Costâ€effective porous ceramic tubes fabricated through a phase inversion/casting process using calcined bauxite. International Journal of Applied Ceramic Technology, 2018, 15, 1567-1576.	2.1	5
41	Effect of Al2O3 and La2O3 on structure and spectroscopic properties of Nd-doped sol–gel silica glasses. Journal of Luminescence, 2018, 204, 554-559.	3.1	19
42	Based on Cu as framework constructed nanoporous CuO/Cu composites by a dealloy method for sodium-ion battery anode. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	4
43	Enabling random lasing in an ultrabroad spectral range with robust platforms based on amorphous media. Nanoscale, 2018, 10, 17275-17282.	5.6	5
44	FeS ₂ nanosheets encapsulated in 3D porous carbon spheres for excellent Na storage in sodium-ion batteries. Inorganic Chemistry Frontiers, 2018, 5, 2462-2471.	6.0	47
45	Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide. Advanced Optical Materials, 2017, 5, 1600717.	7.3	42
46	Lasing Action with Gold Nanorod Hyperbolic Metamaterials. ACS Photonics, 2017, 4, 674-680.	6.6	49
47	Broadband Hotâ€Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride. Advanced Optical Materials, 2017, 5, 1601031.	7.3	248
48	Plasmonics: Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide (Advanced Optical Materials 7/2017). Advanced Optical Materials, 2017, 5, .	7.3	0
49	Solarâ€Energy Harvesting: Broadband Hotâ€Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride (Advanced Optical Materials 15/2017). Advanced Optical Materials, 2017, 5, .	7.3	2
50	Nanolasers Enabled by Metallic Nanoparticles: From Spasers to Random Lasers. Laser and Photonics Reviews, 2017, 11, 1700212.	8.7	63
51	Fabrication of CoFe ₂ O ₄ and NiFe ₂ O ₄ nanoporous spheres as promising anodes for high performance lithium-ion batteries. New Journal of Chemistry, 2017, 41, 15501-15507.	2.8	24
52	Angled physical vapor deposition techniques for non-conformal thin films and three-dimensional structures. MRS Communications, 2016, 6, 17-22.	1.8	12
53	Controlling Random Lasing with Three-Dimensional Plasmonic Nanorod Metamaterials. Nano Letters, 2016, 16, 2471-2477.	9.1	66
54	Random Laser Oscillation with Low Threshold and Optical Microresonator Based on Nanostructured Metals. The Review of Laser Engineering, 2016, 44, 527.	0.0	0

#	Article	IF	CITATIONS
55	Multi-color light emissions from mesoporous silica particles embedded with Ga_2O_3 nanocrystals. Optical Materials Express, 2014, 4, 518.	3.0	4
56	Highly directional spaser array for the red wavelength region. Laser and Photonics Reviews, 2014, 8, 896-903.	8.7	69
57	Wavelength-Tunable Spasing in the Visible. Nano Letters, 2013, 13, 4106-4112.	9.1	166
58	Metal–Dielectric Core–Shell Nanoparticles: Advanced Plasmonic Architectures Towards Multiple Control of Random Lasers. Advanced Optical Materials, 2013, 1, 573-580.	7.3	62
59	Plasmonics: Metal–Dielectric Core–Shell Nanoparticles: Advanced Plasmonic Architectures Towards Multiple Control of Random Lasers (Advanced Optical Materials 8/2013). Advanced Optical Materials, 2013, 1, 538-538.	7.3	1
60	Unidirectional Spaser in Symmetry-Broken Plasmonic Core-Shell Nanocavity. Scientific Reports, 2013, 3, 1241.	3.3	55
61	Synthesis of Gold-Silica Core-Shell Nanoparticles with Tunable Shell Thickness. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2013, 60, 49-54.	0.2	1
62	Plasmonically Controlled Lasing Resonance with Metallicâ^'Dielectric Coreâ^'Shell Nanoparticles. Nano Letters, 2011, 11, 1374-1378.	9.1	117
63	Random Dispersion of Metal Nanoparticles Can Form a Laser Cavity. Chemistry Letters, 2010, 39, 532-537.	1.3	3
64	Random lasing in ballistic and diffusiveâ€regimes for macroporous silica-based systems with tunable scattering strength. Optics Express, 2010, 18, 12153.	3.4	30
65	Random Lasing Actions Induced by Silver Nanoprisms. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2009, 56, 645-650.	0.2	3
66	Coherent random lasers in weakly scattering polymer films containing silver nanoparticles. Physical Review A, 2009, 79, .	2.5	103
67	Coherent random lasers from weakly scattering polymer films embedded with superfine silver nanoparticles. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S102.	0.8	9
68	Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles. Applied Physics Letters, 2008, 92, .	3.3	127
69	Fluorescence properties and laser demonstrations of Nd-doped high silica glasses prepared by sintering nanoporous glass. Journal of Non-Crystalline Solids, 2008, 354, 1226-1229.	3.1	9
70	Novel Bi-doped glasses for broadband optical amplification. Journal of Non-Crystalline Solids, 2008, 354, 1235-1239.	3.1	44
71	Intense visible emissions from d 0 ions-doped silicate glasses. Journal of the Ceramic Society of Japan, 2008, 116, 1147-1149.	1.1	8
72	Intense greenish emission from d0 transition metal ion Ti4+ in oxide glass. Applied Physics Letters, 2007, 90, 051917.	3.3	15

5

#	Article	IF	CITATIONS
73	Two-photon-excited fluorescence from silicate glass containing tantalum ions pumped by a near-infrared femtosecond pulsed laser. Optics Letters, 2006, 31, 2867.	3.3	10
74	Intense blue emission from tantalum-doped silicate glass. Applied Physics Letters, 2006, 89, 061914.	3.3	14
75	GeO2: Bi,M (M=Ga,B) glasses with super-wide infrared luminescence. Chemical Physics Letters, 2005, 403, 410-414.	2.6	50
76	Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3. Optics Express, 2005, 13, 6892.	3.4	98
77	Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses. Optics Letters, 2005, 30, 2433.	3.3	214
78	Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification. Optics Letters, 2004, 29, 1998.	3.3	240