List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10965459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The importance of glutathione in human disease. Biomedicine and Pharmacotherapy, 2003, 57, 145-155.	2.5	1,628
2	Oxidative Stress in Cancer. Cancer Cell, 2020, 38, 167-197.	7.7	1,203
3	The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene, 2003, 22, 7369-7375.	2.6	1,103
4	Role of redox potential and reactive oxygen species in stress signaling. Oncogene, 1999, 18, 6104-6111.	2.6	643
5	Glutathione S-transferase P1–1 (GSTP1–1) Inhibits c-Jun N-terminal Kinase (JNK1) Signaling through Interaction with the C Terminus. Journal of Biological Chemistry, 2001, 276, 20999-21003.	1.6	268
6	Novel Role for Glutathione S-Transferase π. Journal of Biological Chemistry, 2009, 284, 436-445.	1.6	268
7	Causes and Consequences of Cysteine S-Glutathionylation. Journal of Biological Chemistry, 2013, 288, 26497-26504.	1.6	266
8	S-Glutathionylation: From Molecular Mechanisms to Health Outcomes. Antioxidants and Redox Signaling, 2011, 15, 233-270.	2.5	253
9	Glutathione-Associated Enzymes In Anticancer Drug Resistance. Cancer Research, 2016, 76, 7-9.	0.4	246
10	The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radical Biology and Medicine, 2011, 51, 299-313.	1.3	192
11	Oxidative stress, redox regulation and diseases of cellular differentiation. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1607-1621.	1.1	188
12	A Novel Role for Human Sulfiredoxin in the Reversal of Glutathionylation. Cancer Research, 2006, 66, 6800-6806.	0.4	177
13	Glutathione-S-Transferases As Determinants of Cell Survival and Death. Antioxidants and Redox Signaling, 2012, 17, 1728-1737.	2.5	173
14	Sulfur containing amino acids and human disease. Biomedicine and Pharmacotherapy, 2004, 58, 47-55.	2.5	166
15	Cancer Drugs, Genetic Variation and the Glutathione-S-Transferase Gene Family. Molecular Diagnosis and Therapy, 2003, 3, 157-172.	3.3	126
16	An evolving understanding of the S-glutathionylation cycle in pathways of redox regulation. Free Radical Biology and Medicine, 2018, 120, 204-216.	1.3	118
17	Tumor Cell Responses to a Novel Glutathione S-Transferase–Activated Nitric Oxide-Releasing Prodrug. Molecular Pharmacology, 2004, 65, 1070-1079.	1.0	115
18	lsozyme-specific glutathione S-transferase inhibitors potentiate drug sensitivity in cultured human tumor cell lines. Cancer Chemotherapy and Pharmacology, 1996, 37, 363-370.	1.1	112

#	Article	IF	CITATIONS
19	A Glutathione S-Transferase π-Activated Prodrug Causes Kinase Activation Concurrent with S-Glutathionylation of Proteins. Molecular Pharmacology, 2006, 69, 501-508.	1.0	104
20	Glutathione Sâ€Transferases as Regulators of Kinase Pathways and Anticancer Drug Targets. Methods in Enzymology, 2005, 401, 287-307.	0.4	98
21	Redox in redux: Emergent roles for glutathione S-transferase P (GSTP) in regulation of cell signaling and S-glutathionylation. Biochemical Pharmacology, 2007, 73, 1257-1269.	2.0	96
22	Regulatory functions of glutathione <i>S</i> -transferase P1-1 unrelated to detoxification. Drug Metabolism Reviews, 2011, 43, 179-193.	1.5	96
23	MYC Inhibition Depletes Cancer Stem-like Cells in Triple-Negative Breast Cancer. Cancer Research, 2017, 77, 6641-6650.	0.4	91
24	Selenocompounds in Cancer Therapy: An Overview. Advances in Cancer Research, 2017, 136, 259-302.	1.9	89
25	Role of glutathione S-transferase Pi in cisplatin-induced nephrotoxicity. Biomedicine and Pharmacotherapy, 2009, 63, 79-85.	2.5	88
26	NOV-002, a Glutathione Disulfide Mimetic, as a Modulator of Cellular Redox Balance. Cancer Research, 2008, 68, 2870-2877.	0.4	80
27	Increased Myeloproliferation in Clutathione S-Transferase π-deficient Mice Is Associated with a Deregulation of JNK and Janus Kinase/STAT Pathways. Journal of Biological Chemistry, 2004, 279, 8608-8616.	1.6	79
28	Determinants of Drug Response in a Cisplatin-resistant Human Lung Cancer Cell Line. Japanese Journal of Cancer Research, 1990, 81, 527-535.	1.7	73
29	Glutathione <i>S</i> -Transferase P-Mediated Protein S-Glutathionylation of Resident Endoplasmic Reticulum Proteins Influences Sensitivity to Drug-Induced Unfolded Protein Response. Antioxidants and Redox Signaling, 2017, 26, 247-261.	2.5	72
30	Glutathione S-transferases as emerging therapeutic targets. Expert Opinion on Therapeutic Targets, 2001, 5, 477-489.	1.5	64
31	Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells. Redox Biology, 2016, 8, 375-382.	3.9	64
32	TLK-286: a novel glutathioneS-transferase-activated prodrug. Expert Opinion on Investigational Drugs, 2005, 14, 1047-1054.	1.9	59
33	Cellular Response to a Glutathione <i>S</i> -Transferase P1-1 Activated Prodrug. Molecular Pharmacology, 2000, 58, 167-174.	1.0	57
34	Cellular andin VitroTransport of Glutathione Conjugates by MRPâ€. Biochemistry, 1996, 35, 5719-5725.	1.2	50
35	Redox platforms in cancer drug discovery and development. Current Opinion in Chemical Biology, 2011, 15, 156-161.	2.8	46
36	Pleiotropic Functions of Glutathione S-Transferase P. Advances in Cancer Research, 2014, 122, 143-175.	1.9	45

#	Article	IF	CITATIONS
37	Cisplatin chemotherapy and renal function. Advances in Cancer Research, 2021, 152, 305-327.	1.9	45
38	Oxidative stress induces senescence in breast cancer stem cells. Biochemical and Biophysical Research Communications, 2019, 514, 1204-1209.	1.0	43
39	Efficacy of a glutathione S-transferase pi-activated prodrug in platinum-resistant ovarian cancer cells. Molecular Cancer Therapeutics, 2002, 1, 1089-95.	1.9	39
40	Chemical Reactivity Window Determines Prodrug Efficiency toward Glutathione Transferase Overexpressing Cancer Cells. Molecular Pharmaceutics, 2016, 13, 2010-2025.	2.3	37
41	MCST1, a CSH transferase/peroxidase essential for development and hematopoietic stem cell differentiation. Redox Biology, 2018, 17, 171-179.	3.9	37
42	NOV-002, a mimetic of glutathione disulfide. Expert Opinion on Investigational Drugs, 2008, 17, 1075-1083.	1.9	35
43	Influence of ethacrynic acid on glutathione S-transferase π transcript and protein half-lives in human colon cancer cells. Biochemical Pharmacology, 1995, 50, 1233-1238.	2.0	32
44	Adverse Outcomes Associated with Cigarette Smoke Radicals Related to Damage to Protein-disulfide Isomerase. Journal of Biological Chemistry, 2016, 291, 4763-4778.	1.6	32
45	Attenuation of lung fibrosis in mice with a clinically relevant inhibitor of glutathione-S-transferase Ĩ€. JCI Insight, 2016, 1, .	2.3	32
46	Nrf2 inhibition sensitizes breast cancer stem cells to ionizing radiation via suppressing DNA repair. Free Radical Biology and Medicine, 2021, 169, 238-247.	1.3	31
47	Altered redox regulation and S-glutathionylation of BiP contribute to bortezomib resistance in multiple myeloma. Free Radical Biology and Medicine, 2020, 160, 755-767.	1.3	30
48	Isoflavone ME-344 Disrupts Redox Homeostasis and Mitochondrial Function by Targeting Heme Oxygenase 1. Cancer Research, 2019, 79, 4072-4085.	0.4	27
49	The impact of redox and thiol status on the bone marrow: Pharmacological intervention strategies. , 2011, 129, 172-184.		26
50	Estramustine resistance correlates with tau over-expression in human prostatic carcinoma cells. , 1998, 77, 626-631.		25
51	Influence of glutathione S-transferase pi and p53 expression on tumor frequency and spectrum in mice. International Journal of Cancer, 2005, 113, 29-35.	2.3	25
52	ATP-binding cassette transporter-2 (ABCA2) as a therapeutic target. Biochemical Pharmacology, 2018, 151, 188-200.	2.0	25
53	Detoxification Mechanisms and Tumor Cell Resistance to Anticancer Drugs. Medicinal Research Reviews, 1991, 11, 185-217.	5.0	25
54	Pharmacology of a mimetic of glutathione disulfide, NOV-002. Biomedicine and Pharmacotherapy, 2009, 63, 75-78.	2.5	23

#	Article	lF	CITATIONS
55	Nuclear PFKP promotes CXCR4-dependent infiltration by T cell acute lymphoblastic leukemia. Journal of Clinical Investigation, 2021, 131, .	3.9	23
56	Pharmacology of ME-344, a novel cytotoxic isoflavone. Advances in Cancer Research, 2019, 142, 187-207.	1.9	20
57	Reductive stress in cancer. Advances in Cancer Research, 2021, 152, 383-413.	1.9	20
58	Nrf2â€modulation by selenoâ€hormetic agents and its potential for radiation protection. BioFactors, 2020, 46, 239-245.	2.6	16
59	Glutathione S-Transferase P Influences Redox and Migration Pathways in Bone Marrow. PLoS ONE, 2014, 9, e107478.	1.1	15
60	A seleno-hormetine protects bone marrow hematopoietic cells against ionizing radiation-induced toxicities. PLoS ONE, 2019, 14, e0205626.	1.1	13
61	Resistance to phorbol 12-myristate 13-acetate-induced cell growth arrest in an HL60 cell line chronically exposed to a glutathione S-transferase π inhibitor. Biochemical Pharmacology, 2003, 65, 1611-1622.	2.0	12
62	Racial disparities, cancer and response to oxidative stress. Advances in Cancer Research, 2019, 144, 343-383.	1.9	10
63	Development of Telintra as an Inhibitor of Glutathione S-Transferase P. Handbook of Experimental Pharmacology, 2020, 264, 71-91.	0.9	10
64	S-glutathionylation of buccal cell proteins as biomarkers of exposure to hydrogen peroxide. BBA Clinical, 2014, 2, 31-39.	4.1	8
65	S-Glutathionylated Serine Proteinase Inhibitors as Biomarkers for Radiation Exposure in Prostate Cancer Patients. Scientific Reports, 2019, 9, 13792.	1.6	7
66	The effect of a novel taurine nitrosourea, 1-(2-chloroethyl)-3-[2-(dimethylaminosulfonyl)ethyl]-1-nitrosourea (TCNU) on cytotoxicity, DNA crosslinking and glutathione reductase in lung carcinoma cell lines. Cancer Chemotherapy and Pharmacology, 1987, 19, 291-5.	1.1	6
67	Is there a role for glyoxalase I inhibitors as antitumor drugs?. Drug Resistance Updates, 2000, 3, 263-264.	6.5	6
68	Glutathione and ABC Transporters as Determinants of Sensitivity to Oxidative and Nitrosative Stress. Journal of Nutrition, 2004, 134, 3205S-3206S.	1.3	6
69	Redox pathways in cancer drug discovery. Current Opinion in Pharmacology, 2007, 7, 353-354.	1.7	6
70	Commentary on "Proteasome Inhibitors: A Novel Class of Potent and Effective Antitumor Agents― Cancer Research, 2016, 76, 4916-4917.	0.4	6
71	Voltage-Dependent Anion Channels Influence Cytotoxicity of ME-344, a Therapeutic Isoflavone. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 308-318.	1.3	6
72	Sensitivity and fidelity of DNA microarray improved with integration of Amplified Differential Gene Expression (ADGE). BMC Genomics, 2003, 4, 28.	1.2	3

#	Article	IF	CITATIONS
73	Glutathione and Glutathione S-Transferases in Drug Resistance. , 2006, , 213-221.		3
74	Preface. Advances in Cancer Research, 2017, 136, xi-xiv.	1.9	2
75	Glutathione <i>S</i> -Transferase P Influences Redox Homeostasis and Response to Drugs that Induce the Unfolded Protein Response in Zebrafish. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 121-132.	1.3	2
76	Sulfiredoxin. , 2018, , 5221-5232.		1
77	Pharmacological Modulation of Redox Status in Bone Marrow. , 2014, , 3027-3053.		0
78	Sulfiredoxin. , 2017, , 1-12.		0
79	Small molecule inhibition of hypoxia inducible factor-1alpha: a viable therapeutic approach?. Molecular Cancer Therapeutics, 2004, 3, 245-6.	1.9	0