
Doug Barrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1096503/publications.pdf Version: 2024-02-01

DOLIC RADDICK

#	Article	IF	CITATIONS
1	A collection of programs for oneâ€dimensional Ising analysis of linear repeat proteins with point substitutions. Protein Science, 2021, 30, 168-186.	7.6	4
2	Analysis of Tandem Repeat Protein Folding Using Nearest-Neighbor Models. Annual Review of Biophysics, 2021, 50, 245-265.	10.0	12
3	Surface residues and nonadditive interactions stabilize a consensus homeodomain protein. Biophysical Journal, 2021, 120, 5267-5278.	0.5	2
4	The use of consensus sequence information to engineer stability and activity in proteins. Methods in Enzymology, 2020, 643, 149-179.	1.0	23
5	A Second Backbone: The Contribution of a Buried Asparagine Ladder to the Global and Local Stability of a Leucine-Rich Repeat Protein. Biochemistry, 2019, 58, 3480-3493.	2.5	11
6	Consensus sequence design as a general strategy to create hyperstable, biologically active proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11275-11284.	7.1	105
7	Functional instability allows access to DNA in longer transcription Activator-Like effector (TALE) arrays. ELife, 2019, 8, .	6.0	8
8	High-Pressure NMR and SAXS Reveals How Capping Modulates Folding Cooperativity of the pp32 Leucine-rich Repeat Protein. Journal of Molecular Biology, 2018, 430, 1336-1349.	4.2	7
9	Extreme stability in de novo-designed repeat arrays is determined by unusually stable short-range interactions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7539-7544.	7.1	25
10	The consequences of cavity creation on the folding landscape of a repeat protein depend upon context. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8153-E8161.	7.1	17
11	Creating a Homeodomain with High Stability and DNA Binding Affinity by Sequence Averaging. Journal of the American Chemical Society, 2017, 139, 5051-5060.	13.7	24
12	Control of transcriptional activity by design of charge patterning in the intrinsically disordered RAM region of the Notch receptor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9243-E9252.	7.1	95
13	Synergistic enhancement of cellulase pairs linked by consensus ankyrin repeats: Determination of the roles of spacing, orientation, and enzyme identity. Proteins: Structure, Function and Bioinformatics, 2016, 84, 1043-1054.	2.6	4
14	High-Resolution Mapping of a Repeat Protein Folding Free Energy Landscape. Biophysical Journal, 2016, 111, 2368-2376.	0.5	32
15	Broken TALEs: Transcription Activator-like Effectors Populate Partly Folded States. Biophysical Journal, 2016, 111, 2395-2403.	0.5	10
16	Direct NMR Detection of Bifurcated Hydrogen Bonding in the α-Helix N-Caps of Ankyrin Repeat Proteins. Journal of the American Chemical Society, 2015, 137, 1008-1011.	13.7	22
17	Highly polarized C-terminal transition state of the leucine-rich repeat domain of PP32 is governed by local stability. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2298-306.	7.1	19
18	A Naturally Occurring Repeat Protein with High Internal Sequence Identity Defines a New Class of TPR-like Proteins. Structure, 2015, 23, 2055-2065.	3.3	28

DOUG BARRICK

#	Article	IF	CITATIONS
19	Effects of Linker Length and Transient Secondary Structure Elements in the Intrinsically Disordered Notch RAM Region on Notch Signaling. Journal of Molecular Biology, 2015, 427, 3587-3597.	4.2	18
20	Capping motifs stabilize the leucineâ€rich repeat protein PP32 and rigidify adjacent repeats. Protein Science, 2014, 23, 801-811.	7.6	19
21	Direct Observation of Parallel Folding Pathways Revealed Using a Symmetric Repeat Protein System. Biophysical Journal, 2014, 107, 220-232.	0.5	49
22	Insertion of Endocellulase Catalytic Domains into Thermostable Consensus Ankyrin Scaffolds: Effects on Stability and Cellulolytic Activity. Applied and Environmental Microbiology, 2013, 79, 6684-6696.	3.1	16
23	Mapping the Deltex-Binding Surface on the Notch Ankyrin Domain Using Analytical Ultracentrifugation. Journal of Molecular Biology, 2011, 414, 243-259.	4.2	9
24	Size and Sequence and the Volume Change of Protein Folding. Journal of the American Chemical Society, 2011, 133, 6020-6027.	13.7	101
25	The Contribution of Entropy, Enthalpy, and Hydrophobic Desolvation to Cooperativity in Repeat-Protein Folding. Structure, 2011, 19, 349-360.	3.3	67
26	The folding of single domain proteins—have we reached a consensus?. Current Opinion in Structural Biology, 2011, 21, 12-24.	5.7	132
27	Deletion of internal structured repeats increases the stability of a leucine-rich repeat protein, YopM. Biophysical Chemistry, 2011, 159, 152-161.	2.8	14
28	Thermodynamic Analysis of the CSL·Notch Interaction. Journal of Biological Chemistry, 2010, 285, 6681-6692.	3.4	40
29	Unique Features of the Folding Landscape of a Repeat Protein Revealed byÂPressure Perturbation. Biophysical Journal, 2010, 98, 2712-2721.	0.5	38
30	Predicting repeat protein folding kinetics from an experimentally determined folding energy landscape. Protein Science, 2009, 18, 58-68.	7.6	14
31	What have we learned from the studies of two-state folders, and what are the unanswered questions about two-state protein folding?. Physical Biology, 2009, 6, 015001.	1.8	44
32	Chapter 4 Analysis of Repeatâ€Protein Folding Using Nearestâ€Neighbor Statistical Mechanical Models. Methods in Enzymology, 2009, 455, 95-125.	1.0	41
33	Câ€ŧerminal deletion of leucineâ€ŧich repeats from YopM reveals a heterogeneous distribution of stability in a cooperatively folded protein. Protein Science, 2009, 18, 1948-1960.	7.6	27
34	Structure and stability of the ankyrin domain of the Drosophila Notch receptor. Protein Science, 2009, 12, 2622-2632.	7.6	89
35	Biological Regulation via Ankyrin Repeat Folding. ACS Chemical Biology, 2009, 4, 19-22.	3.4	15
36	Folding thermodynamics and kinetics of the leucineâ€rich repeat domain of the virulence factor Internalin B. Protein Science, 2008, 17, 43-53.	7.6	24

DOUG BARRICK

#	Article	IF	CITATIONS
37	Folding landscapes of ankyrin repeat proteins: experiments meet theory. Current Opinion in Structural Biology, 2008, 18, 27-34.	5.7	92
38	The Leucine-Rich Repeat Domain of Internalin B Folds along a Polarized N-Terminal Pathway. Structure, 2008, 16, 705-714.	3.3	42
39	Protein Folding and Stability Using Denaturants. Methods in Cell Biology, 2008, 84, 295-325.	1.1	59
40	Thermodynamics, Kinetics, and Salt dependence of Folding of YopM, a Large Leucine-rich Repeat Protein. Journal of Molecular Biology, 2008, 383, 1195-1209.	4.2	22
41	Repeat-protein folding: New insights into origins of cooperativity, stability, and topology. Archives of Biochemistry and Biophysics, 2008, 469, 83-99.	3.0	83
42	Rerouting the Folding Pathway of the Notch Ankyrin Domain by Reshaping the Energy Landscape. Journal of the American Chemical Society, 2008, 130, 5681-5688.	13.7	52
43	The effects of conformational heterogeneity on the binding of the Notch intracellular domain to effector proteins: a case of biologically tuned disorder. Biochemical Society Transactions, 2008, 36, 157-166.	3.4	46
44	Predicting coupling limits from an experimentally determined energy landscape. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4907-4912.	7.1	34
45	Quantitative Dissection of the Notch:CSL Interaction: Insights into the Notch-mediated Transcriptional Switch. Journal of Molecular Biology, 2007, 365, 577-589.	4.2	89
46	Enhancing the Stability and Folding Rate of a Repeat Protein through the Addition of Consensus Repeats. Journal of Molecular Biology, 2007, 365, 1187-1200.	4.2	53
47	The Notch Transcription Activation Complex Makes Its Move. Cell, 2006, 124, 883-885.	28.9	43
48	The Role of Introns in Repeat Protein Gene Formation. Journal of Molecular Biology, 2006, 360, 258-266.	4.2	21
49	The Notch Ankyrin Domain Folds via a Discrete, Centralized Pathway. Structure, 2006, 14, 1303-1312.	3.3	49
50	An improved experimental system for determining small folding entropy changes resulting from proline to alanine substitutions. Protein Science, 2005, 14, 2429-2435.	7.6	12
51	Structure and Notch Receptor Binding of the Tandem WWE Domain of Deltex. Structure, 2005, 13, 1599-1611.	3.3	51
52	Effect of Multiple Prolyl Isomerization Reactions on the Stability and Folding Kinetics of the Notch Ankyrin Domain: Experiment and Theory. Journal of Molecular Biology, 2005, 352, 253-265.	4.2	21
53	Experimental Characterization of the Folding Kinetics of the Notch Ankyrin Domain. Journal of Molecular Biology, 2005, 352, 266-281.	4.2	40
54	Nonspecific hydrophobic interactions stabilize an equilibrium intermediate of apomyoglobin at a key position within the AGH region. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12514-12519.	7.1	26

Doug Barrick

#	Article	IF	CITATIONS
55	An experimentally determined protein folding energy landscape. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14102-14107.	7.1	153
56	Nuclear Magnetic Resonance Spectroscopy in the Study of Hemoglobin Cooperativity. Methods in Enzymology, 2004, 379, 28-54.	1.0	7
57	The Tolerance of a Modular Protein to Duplication and Deletion of Internal Repeats. Journal of Molecular Biology, 2004, 344, 169-178.	4.2	47
58	Folding by Consensus. Structure, 2003, 11, 486-487.	3.3	11
59	Measuring the stability of partly folded proteins using TMAO. Protein Science, 2003, 12, 1522-1529.	7.6	145
60	Limits of Cooperativity in a Structurally Modular Protein: Response of the Notch Ankyrin Domain to Analogous Alanine Substitutions in Each Repeat. Journal of Molecular Biology, 2002, 324, 373-386.	4.2	58
61	Relationships between the temperature dependence of solvent denaturation and the denaturant dependence of protein stability curves. Biophysical Chemistry, 2002, 101-102, 221-237.	2.8	39
62	Studies of the Ankyrin Repeats of theDrosophilamelanogasterNotch Receptor. 2. Solution Stability and Cooperativity of Unfoldingâ€. Biochemistry, 2001, 40, 14357-14367.	2.5	89
63	Distal Ligand Reactivity and Quaternary Structure Studies of Proximally Detached Hemoglobins. Biochemistry, 2001, 40, 3780-3795.	2.5	30
64	Studies of the Ankyrin Repeats of theDrosophila melanogasterNotch Receptor. 1. Solution Conformational and Hydrodynamic Propertiesâ€. Biochemistry, 2001, 40, 14344-14356.	2.5	58
65	Trans-substitution of the proximal hydrogen bond in myoglobin: I. Structural consequences of hydrogen bond deletion. , 2000, 39, 278-290.		16
66	Trans-substitution of the proximal hydrogen bond in myoglobin: II. Energetics, functional consequences, and implications for hemoglobin allostery. , 2000, 39, 291-308.		10
67	A test of the role of the proximal histidines in the Perutz model for cooperativity in haemoglobin. Nature Structural and Molecular Biology, 1997, 4, 78-83.	8.2	76
68	The Association Rate Constant for Heme Binding to Globin Is Independent of Protein Structure. Biochemistry, 1996, 35, 11293-11299.	2.5	221
69	Depletion and replacement of protein metal ligands. Current Opinion in Biotechnology, 1995, 6, 411-418.	6.6	35
70	Replacement of the Proximal Ligand of Sperm Whale Myoglobin with Free Imidazole in the Mutant His-93.fwdarw.Gly. Biochemistry, 1994, 33, 6546-6554.	2.5	183
71	Functional cavities in proteins: A general method for proximal ligand substitution in myoglobin. Journal of the American Chemical Society, 1994, 116, 6981-6982.	13.7	101
72	Three-state analysis of sperm whale apomyoglobin folding. Biochemistry, 1993, 32, 3790-3796.	2.5	241