## **Chengxin Zhang**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1096044/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | COFACTOR: improved protein function prediction by combining structure, sequence and protein–protein interaction information. Nucleic Acids Research, 2017, 45, W291-W299.                                                                | 14.5 | 424       |
| 2  | Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nature Communications, 2019, 10, 676.                                                                                    | 12.8 | 278       |
| 3  | Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods, 2021, 1, 100014.                                                                                        | 2.9  | 272       |
| 4  | The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biology, 2019, 20, 244.                                                        | 8.8  | 261       |
| 5  | Protein Structure and Sequence Reanalysis of 2019-nCoV Genome Refutes Snakes as Its Intermediate<br>Host and the Unique Similarity between Its Spike Protein Insertions and HIV-1. Journal of Proteome<br>Research, 2020, 19, 1351-1360. | 3.7  | 242       |
| 6  | A novel metalporphyrin-based microporous organic polymer with high CO <sub>2</sub> uptake and efficient chemical conversion of CO <sub>2</sub> under ambient conditions. Journal of Materials Chemistry A, 2017, 5, 1509-1515.           | 10.3 | 186       |
| 7  | PyMod 2.0: improvements in protein sequence-structure analysis and homology modeling within PyMOL. Bioinformatics, 2017, 33, 444-446.                                                                                                    | 4.1  | 183       |
| 8  | Deepâ€learning contactâ€map guided protein structure prediction in CASP13. Proteins: Structure,<br>Function and Bioinformatics, 2019, 87, 1149-1164.                                                                                     | 2.6  | 180       |
| 9  | Controlling Monomer Feeding Rate to Achieve Highly Crystalline Covalent Triazine Frameworks.<br>Advanced Materials, 2019, 31, e1807865.                                                                                                  | 21.0 | 158       |
| 10 | DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins. Bioinformatics, 2020, 36, 2105-2112.                                                            | 4.1  | 147       |
| 11 | ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks. Bioinformatics, 2019, 35, 4647-4655.                                                                                   | 4.1  | 142       |
| 12 | Layered microporous polymers by solvent knitting method. Science Advances, 2017, 3, e1602610.                                                                                                                                            | 10.3 | 135       |
| 13 | LOMETS2: improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins. Nucleic Acids Research, 2019, 47, W429-W436.                                                         | 14.5 | 118       |
| 14 | BindProfX: Assessing Mutation-Induced Binding Affinity Change by Protein Interface Profiles with<br>Pseudo-Counts. Journal of Molecular Biology, 2017, 429, 426-434.                                                                     | 4.2  | 107       |
| 15 | Assembling multidomain protein structures through analogous global structural alignments.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15930-15938.                                    | 7.1  | 104       |
| 16 | Ensembling multiple raw coevolutionary features with deep residual neural networks for<br>contactâ€map prediction in CASP13. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1082-1091.                                      | 2.6  | 96        |
| 17 | Templateâ€based and free modeling of lâ€TASSER and QUARK pipelines using predicted contact maps in CASP12. Proteins: Structure, Function and Bioinformatics, 2018, 86, 136-151.                                                          | 2.6  | 86        |
| 18 | Novel POSS-based organic–inorganic hybrid porous materials by low cost strategies. Journal of<br>Materials Chemistry A, 2015, 3, 6542-6548.                                                                                              | 10.3 | 81        |

CHENGXIN ZHANG

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | I-TASSER gateway: A protein structure and function prediction server powered by XSEDE. Future<br>Generation Computer Systems, 2019, 99, 73-85.                                                                                  | 7.5  | 80        |
| 20 | Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks. PLoS Computational Biology, 2021, 17, e1008865.                                             | 3.2  | 70        |
| 21 | MetaGO: Predicting Gene Ontology of Non-homologous Proteins Through Low-Resolution Protein<br>Structure Prediction and Protein–Protein Network Mapping. Journal of Molecular Biology, 2018, 430,<br>2256-2265.                  | 4.2  | 58        |
| 22 | Protein structure prediction using deep learning distance and hydrogenâ€bonding restraints in <scp>CASP14</scp> . Proteins: Structure, Function and Bioinformatics, 2021, 89, 1734-1751.                                        | 2.6  | 53        |
| 23 | Detecting distant-homology protein structures by aligning deep neural-network based contact maps.<br>PLoS Computational Biology, 2019, 15, e1007411.                                                                            | 3.2  | 45        |
| 24 | RNA-align: quick and accurate alignment of RNA 3D structures based on size-independent TM-scoreRNA.<br>Bioinformatics, 2019, 35, 4459-4461.                                                                                     | 4.1  | 44        |
| 25 | Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions. Nature Communications, 2021, 12, 5011.                                                                                | 12.8 | 44        |
| 26 | EDIL3 deficiency ameliorates adverse cardiac remodelling by neutrophil extracellular traps<br>(NET)-mediated macrophage polarization. Cardiovascular Research, 2022, 118, 2179-2195.                                            | 3.8  | 29        |
| 27 | Fueling ab initio folding with marine metagenomics enables structure and function predictions of new protein families. Genome Biology, 2019, 20, 229.                                                                           | 8.8  | 28        |
| 28 | Structure and Protein Interaction-Based Gene Ontology Annotations Reveal Likely Functions of<br>Uncharacterized Proteins on Human Chromosome 17. Journal of Proteome Research, 2018, 17, 4186-4196.                             | 3.7  | 27        |
| 29 | Identifying the Zoonotic Origin of SARS-CoV-2 by Modeling the Binding Affinity between the Spike<br>Receptor-Binding Domain and Host ACE2. Journal of Proteome Research, 2020, 19, 4844-4856.                                   | 3.7  | 27        |
| 30 | Generation of a live attenuated influenza A vaccine by proteolysis targeting. Nature Biotechnology, 2022, 40, 1370-1377.                                                                                                        | 17.5 | 26        |
| 31 | Progressive assembly of multi-domain protein structures from cryo-EM density maps. Nature<br>Computational Science, 2022, 2, 265-275.                                                                                           | 8.0  | 25        |
| 32 | hiPSC Modeling of Lineage-Specific Smooth Muscle Cell Defects Caused by <i>TGFBR1</i> <sup><br/><i>A230T</i> </sup> Variant, and Its Therapeutic Implications for Loeys-Dietz Syndrome. Circulation,<br>2021, 144, 1145-1159.   | 1.6  | 24        |
| 33 | Functions of Essential Genes and a Scale-Free Protein Interaction Network Revealed by<br>Structure-Based Function and Interaction Prediction for a Minimal Genome. Journal of Proteome<br>Research, 2021, 20, 1178-1189.        | 3.7  | 23        |
| 34 | Protein interâ€residue contact and distance prediction by coupling complementary coevolution features with deep residual networks in <scp>CASP14</scp> . Proteins: Structure, Function and Bioinformatics, 2021, 89, 1911-1921. | 2.6  | 23        |
| 35 | Blinded Testing of Function Annotation for uPE1 Proteins by I-TASSER/COFACTOR Pipeline Using the 2018–2019 Additions to neXtProt and the CAFA3 Challenge. Journal of Proteome Research, 2019, 18, 4154-4166.                    | 3.7  | 20        |
| 36 | ADDRESS: A Database of Disease-associated Human Variants Incorporating Protein Structure and Folding Stabilities. Journal of Molecular Biology, 2021, 433, 166840.                                                              | 4.2  | 15        |

CHENGXIN ZHANG

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Synthesis of MWCNT-Based Hyper-Cross-Linked Polymers with Thickness-Tunable Organic Porous<br>Layers. ACS Macro Letters, 2019, 8, 403-408.                                         | 4.8 | 14        |
| 38 | Detecting Gene Ontology misannotations using taxon-specific rate ratio comparisons. Bioinformatics, 2020, 36, 4383-4388.                                                           | 4.1 | 10        |
| 39 | Novel fullerene-based porous materials constructed by a solvent knitting strategy. Chemical Communications, 2017, 53, 12758-12761.                                                 | 4.1 | 9         |
| 40 | Integrating Multimeric Threading With High-throughput Experiments for Structural Interactome of Escherichia coli. Journal of Molecular Biology, 2021, 433, 166944.                 | 4.2 | 9         |
| 41 | <i>CSSR</i> : assignment of secondary structure to coarse-grained RNA tertiary structures. Acta<br>Crystallographica Section D: Structural Biology, 2022, 78, 466-471.             | 2.3 | 7         |
| 42 | Deep learning geometrical potential for high-accuracy ab initio protein structure prediction. IScience, 2022, 25, 104425.                                                          | 4.1 | 7         |
| 43 | Approaches to <i>ab initio</i> molecular replacement of α-helical transmembrane proteins. Acta<br>Crystallographica Section D: Structural Biology, 2017, 73, 985-996.              | 2.3 | 6         |
| 44 | GPU-I-TASSER: a GPU accelerated I-TASSER protein structure prediction tool. Bioinformatics, 2022, 38, 1754-1755.                                                                   | 4.1 | 6         |
| 45 | Soluble CD13 induces inflammatory arthritis by activating the bradykinin receptor B1. Journal of Clinical Investigation, 2022, 132, .                                              | 8.2 | 6         |
| 46 | Rational Design of Adenylate Kinase Thermostability through Coevolution and Sequence Divergence<br>Analysis. International Journal of Molecular Sciences, 2021, 22, 2768.          | 4.1 | 5         |
| 47 | Unprecedented Processable Hypercrosslinked Polymers with Controlled Knitting. Macromolecular<br>Rapid Communications, 2022, 43, e2100449.                                          | 3.9 | 4         |
| 48 | TripletGO: Integrating Transcript Expression Profiles with Protein Homology Inferences for Gene Function Prediction. Genomics, Proteomics and Bioinformatics, 2022, 20, 1013-1027. | 6.9 | 4         |
| 49 | RTL8 promotes nuclear localization of UBQLN2 to subnuclear compartments associated with protein quality control. Cellular and Molecular Life Sciences, 2022, 79, 176.              | 5.4 | 3         |
| 50 | Function Prediction for G Protein-Coupled Receptors through Text Mining and Induction Matrix Completion. ACS Omega, 2019, 4, 3045-3054.                                            | 3.5 | 2         |
| 51 | AMIGOS III: pseudo-torsion angle visualization and motif-based structure comparison of nucleic acids.<br>Bioinformatics, 2022, 38, 2937-2939.                                      | 4.1 | 1         |