Randall Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10959360/publications.pdf

Version: 2024-02-01

567281 752698 2,988 32 15 20 citations h-index g-index papers 32 32 32 1316 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Proof of concept: digital clock drawing behaviors prior to transcatheter aortic valve replacement may predict length of hospital stay and cost of care. Exploration of Medicine, 2021, 2, 110-121.	1.5	5
2	Normative References for Graphomotor and Latency Digital Clock Drawing Metrics for Adults Age 55 and Older: Operationalizing the Production of a Normal Appearing Clock. Journal of Alzheimer's Disease, 2021, 82, 59-70.	2.6	7
3	DCTclock: Clinically-Interpretable and Automated Artificial Intelligence Analysis of Drawing Behavior for Capturing Cognition. Frontiers in Digital Health, 2021, 3, 750661.	2.8	19
4	Cognitive Correlates of Digital Clock Drawing Metrics in Older Adults with and without Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2020, 75, 73-83.	2.6	37
5	Clock Drawing Performance Slows for Older Adults After Total Knee Replacement Surgery. Anesthesia and Analgesia, 2019, 129, 212-219.	2.2	19
6	Age and Graphomotor Decision Making Assessed with the Digital Clock Drawing Test: The Framingham Heart Study. Journal of Alzheimer's Disease, 2017, 60, 1611-1620.	2.6	38
7	TDâ€Pâ€003: Using the Digital Clock Drawing Test and Machine Learning to Improve Accuracy of Cognitive Screening. Alzheimer's and Dementia, 2016, 12, P153.	0.8	0
8	O4-12-03: Using the Digital Clock Drawing Test and Machine Learning to Improve Accuracy of Cognitive Screening., 2016, 12, P363-P364.		0
9	Cognitive and connectome properties detectable through individual differences in graphomotor organization. Neuropsychologia, 2016, 85, 301-309.	1.6	22
10	Learning classification models of cognitive conditions from subtle behaviors in the digital Clock Drawing Test. Machine Learning, 2016, 102, 393-441.	5.4	111
11	A Situationally Aware Voiceâ€commandable Robotic Forklift Working Alongside People in Unstructured Outdoor Environments. Journal of Field Robotics, 2015, 32, 590-628.	6.0	24
12	Digital Clock Drawing: Differentiating " <i>Thinking</i> à€• <i>versus</i> " <i>Doing</i> à6•in Younger and Older Adults with Depression. Journal of the International Neuropsychological Society, 2014, 20, 920-928.	1.8	37
13	THink: Inferring Cognitive Status from Subtle Behaviors. Proceedings of the Innovative Applications of Artificial Intelligence Conference, 2014, 2014, 2898-2905.	1.0	2
14	THink: Inferring Cognitive Status from Subtle Behaviors. Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 2014, 2898-2905.	4.9	13
15	Distribution-sensitive learning for imbalanced datasets. , 2013, , .		20
16	Action Recognition by Hierarchical Sequence Summarization. , 2013, , .		67
17	Multi-view latent variable discriminative models for action recognition. , 2012, , .		17
18	Tracking body and hands for gesture recognition: NATOPS aircraft handling signals database. , 2011, , .		72

#	Article	IF	Citations
19	Multimodal interaction with an autonomous forklift. , 2010, , .		8
20	A voice-commandable robotic forklift working alongside humans in minimally-prepared outdoor environments. , 2010, , .		43
21	Multimodal design: An overview. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2008, 22, 83-84.	1.1	0
22	Expert Systems: A Perspective from Computer Science. , 2006, , 87-104.		7
23	Generating multiple new designs from a sketch. Artificial Intelligence, 1998, 104, 211-264.	5.8	57
24	DIAGNOSIS VIA CAUSAL REASONING: PATHS OF INTERACTION AND THE LOCALITY PRINCIPLE. , 1990, , 535-541.		34
25	Diagnostic reasoning based on structure and behavior. Artificial Intelligence, 1984, 24, 347-410.	5.8	7 85
26	Diagnostic Reasoning Based on Structure and Behavior. , 1984, , 347-410.		24
27	Reasoning from first principles in electronic troubleshooting. International Journal of Man-Machine Studies, 1983, 19, 403-423.	0.7	109
28	Frameworks for Cooperation in Distributed Problem Solving. IEEE Transactions on Systems, Man, and Cybernetics, 1981, 11, 61-70.	0.9	488
29	Evaluating the performance of a computer-based consultant. Computer Programs in Biomedicine, 1979, 9, 95-102.	0.7	123
30	Production rules as a representation for a knowledge-based consultation programâ~†. Artificial Intelligence, 1977, 8, 15-45.	5.8	447
31	Production Rules as a Representation for a Knowledge-Based Consultation Program. Computers and Medicine, 1977, , 3-37.	0.1	4
32	Computer-based consultations in clinical therapeutics: Explanation and rule acquisition capabilities of the MYCIN system. Journal of Biomedical Informatics, 1975, 8, 303-320.	0.7	349