
Chandishwar Nath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10957393/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer's Disease: Understanding the Therapeutics Strategies. Molecular Neurobiology, 2016, 53, 648-661.	4.0	352
2	A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba. Pharmacology Biochemistry and Behavior, 2002, 73, 893-900.	2.9	228
3	A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia. Neuropharmacology, 2009, 56, 779-787.	4.1	133
4	Effect of donepezil and tacrine on oxidative stress in intracerebral streptozotocin-induced model of dementia in mice. European Journal of Pharmacology, 2008, 581, 283-289.	3.5	131
5	Protective effect of quercetin against intracerebral streptozotocin induced reduction in cerebral blood flow and impairment of memory in mice. Behavioural Brain Research, 2010, 209, 73-79.	2.2	127
6	Insulin receptor signaling in rat hippocampus: A study in STZ (ICV) induced memory deficit model. European Neuropsychopharmacology, 2011, 21, 261-273.	0.7	127
7	Effect of curcumin on brain insulin receptors and memory functions in STZ (ICV) induced dementia model of rat. Pharmacological Research, 2010, 61, 247-252.	7.1	113
8	Glial activation and post-synaptic neurotoxicity: The key events in Streptozotocin (ICV) induced memory impairment in rats. Pharmacology Biochemistry and Behavior, 2014, 117, 104-117.	2.9	113
9	Okadaic acid induced neurotoxicity: An emerging tool to study Alzheimer's disease pathology. NeuroToxicology, 2013, 37, 163-172.	3.0	109
10	A study on neuroinflammation and NMDA receptor function in STZ (ICV) induced memory impaired rats. Journal of Neuroimmunology, 2013, 254, 1-9.	2.3	108
11	Gugulipid, an extract of Commiphora whighitii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice. Pharmacology Biochemistry and Behavior, 2007, 86, 797-805.	2.9	101
12	Candesartan improves memory decline in mice: Involvement of AT1 receptors in memory deficit induced by intracerebral streptozotocin. Behavioural Brain Research, 2009, 199, 235-240.	2.2	84
13	Cholinergic protection via $\hat{l}\pm 7$ nicotinic acetylcholine receptors and PI3K-Akt pathway in LPS-induced neuroinflammation. Neurochemistry International, 2010, 56, 135-142.	3.8	84
14	Influence of LPS-induced neuroinflammation on acetylcholinesterase activity in rat brain. Journal of Neuroimmunology, 2008, 205, 51-56.	2.3	83
15	Novel Carbamates as Orally Active Acetylcholinesterase Inhibitors Found to Improve Scopolamine-Induced Cognition Impairment: Pharmacophore-Based Virtual Screening, Synthesis, and Pharmacology. Journal of Medicinal Chemistry, 2010, 53, 6490-6505.	6.4	80
16	Protective effect of fruits of Morinda citrifolia L. on scopolamine induced memory impairment in mice: A behavioral, biochemical and cerebral blood flow study. Journal of Ethnopharmacology, 2012, 139, 34-41.	4.1	80
17	Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. European Journal of Pharmacology, 2010, 640, 206-210.	3.5	79
18	Okadaic acid (ICV) induced memory impairment in rats: A suitable experimental model to test anti-dementia activity. Brain Research, 2010, 1309, 66-74.	2.2	78

#	Article	IF	CITATIONS
19	Molecular and Cellular Mechanism of Okadaic Acid (OKA)-Induced Neurotoxicity: A Novel Tool for Alzheimer's Disease Therapeutic Application. Molecular Neurobiology, 2014, 50, 852-865.	4.0	73
20	Improvement of brain energy metabolism and cholinergic functions contributes to the beneficial effects of silibinin against streptozotocin induced memory impairment. Behavioural Brain Research, 2011, 221, 207-215.	2.2	71
21	Mitochondrial dysfunction: A crucial event in okadaic acid (ICV) induced memory impairment and apoptotic cell death in rat brain. Pharmacology Biochemistry and Behavior, 2011, 100, 311-319.	2.9	71
22	Astrocytes and Microglia: Responses to Neuropathological Conditions. International Journal of Neuroscience, 2011, 121, 589-597.	1.6	68
23	Intranasal Insulin Administration Ameliorates Streptozotocin (ICV)-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Memory Impairment in Rats. Molecular Neurobiology, 2017, 54, 6507-6522.	4.0	67
24	Angiotensin II Receptor Blockers Attenuate Lipopolysaccharide-Induced Memory Impairment by Modulation of NF-κB-Mediated BDNF/CREB Expression and Apoptosis in Spontaneously Hypertensive Rats. Molecular Neurobiology, 2018, 55, 1725-1739.	4.0	64
25	Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. European Journal of Pharmacology, 2013, 715, 381-394.	3.5	63
26	ICV STZ induced impairment in memory and neuronal mitochondrial function: A protective role of nicotinic receptor. Behavioural Brain Research, 2011, 224, 50-57.	2.2	59
27	Role of central angiotensin receptors in scopolamine-induced impairment in memory, cerebral blood flow, and cholinergic function. Psychopharmacology, 2012, 222, 185-202.	3.1	57
28	Endoplasmic Reticulum Stress Plays a Key Role in Rotenone-Induced Apoptotic Death of Neurons. Molecular Neurobiology, 2016, 53, 285-298.	4.0	56
29	Central angiotensin converting enzyme facilitates memory impairment in intracerebroventricular streptozotocin treated rats. Behavioural Brain Research, 2012, 226, 317-330.	2.2	52
30	Inhibition of central angiotensin converting enzyme ameliorates scopolamine induced memory impairment in mice: Role of cholinergic neurotransmission, cerebral blood flow and brain energy metabolism. Behavioural Brain Research, 2012, 232, 66-76.	2.2	51
31	Cholinergic influence on memory stages: A study on scopolamine amnesic mice. Indian Journal of Pharmacology, 2009, 41, 192.	0.7	50
32	Sulforaphane Ameliorates Okadaic Acid-Induced Memory Impairment in Rats by Activating the Nrf2/HO-1 Antioxidant Pathway. Molecular Neurobiology, 2016, 53, 5310-5323.	4.0	50
33	Intranasal insulin improves cerebral blood flow, Nrf-2 expression and BDNF in STZ (ICV)-induced memory impaired rats. Life Sciences, 2017, 173, 1-10.	4.3	50
34	Standardized Extract of <i>Bacopa monniera</i> Attenuates Okadaic Acid Induced Memory Dysfunction in Rats: Effect on Nrf2 Pathway. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-18.	1.2	47
35	Role of molecular isoforms of acetylcholinesterase in learning and memory functions. Pharmacology Biochemistry and Behavior, 2005, 81, 89-99.	2.9	45
36	Rotenone-induced apoptosis and role of calcium: a study on Neuro-2a cells. Archives of Toxicology, 2012, 86, 1387-1397.	4.2	45

CHANDISHWAR NATH

#	Article	IF	CITATIONS
37	Astrocyte Activation: A Key Step in Rotenone Induced Cytotoxicity and DNA Damage. Neurochemical Research, 2012, 37, 2178-2189.	3.3	44
38	Adaptogenic and anti-amnesic properties of in rodents. Pharmacology Biochemistry and Behavior, 2005, 81, 424-432.	2.9	43
39	The Expression of CYP2D22, An Ortholog of Human CYP2D6, in Mouse Striatum and Its Modulation in 1-Methyl 4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinson's Disease Phenotype and Nicotine-Mediated Neuroprotection. Rejuvenation Research, 2009, 12, 185-197.	1.8	42
40	Melatonin attenuated mediators of neuroinflammation and alpha-7 nicotinic acetylcholine receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat astrocytoma cells, C6. Free Radical Research, 2012, 46, 1167-1177.	3.3	42
41	Protection of streptozotocin induced insulin receptor dysfunction, neuroinflammation and amyloidogenesis in astrocytes by insulin. Neuropharmacology, 2014, 86, 337-352.	4.1	42
42	Effect of insulin and melatonin on acetylcholinesterase activity in the brain of amnesic mice. Behavioural Brain Research, 2008, 189, 381-386.	2.2	41
43	Effect of anti-dementia drugs on LPS induced neuroinflammation in mice. Life Sciences, 2007, 80, 1977-1983.	4.3	40
44	Melatonin alleviates memory deficits and neuronal degeneration induced by intracerebroventricular administration of streptozotocin in rats. Pharmacology Biochemistry and Behavior, 2010, 94, 397-403.	2.9	40
45	A study on neuroinflammatory marker in brain areas of okadaic acid (ICV) induced memory impaired rats. Life Sciences, 2012, 90, 713-720.	4.3	40
46	Streptozotocin Induced Neurotoxicity Involves Alzheimer's Related Pathological Markers: a Study on N2A Cells. Molecular Neurobiology, 2016, 53, 2794-2806.	4.0	40
47	The mechanism of action of MPTP-induced neuroinflammation and its modulation by melatonin in rat astrocytoma cells, C6. Free Radical Research, 2010, 44, 1304-1316.	3.3	39
48	Rotenone induced neurotoxicity in rat brain areas: A histopathological study. Neuroscience Letters, 2011, 501, 123-127.	2.1	39
49	Nicotine and caffeine-mediated modulation in the expression of toxicant responsive genes and vesicular monoamine transporter-2 in 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease phenotype in mouse. Brain Research, 2008, 1207, 193-206.	2.2	38
50	Inhibitory role of cholinergic system mediated via α7 nicotinic acetylcholine receptor in LPS-induced neuro-inflammation. Innate Immunity, 2010, 16, 3-13.	2.4	38
51	Evaluation of guggulipid and nimesulide on production of inflammatory mediators and GFAP expression in LPS stimulated rat astrocytoma, cell line (C6). Journal of Ethnopharmacology, 2010, 127, 625-630.	4.1	37
52	Effect of angiotensin II on spatial memory, cerebral blood flow, cholinergic neurotransmission, and brain derived neurotrophic factor in rats. Psychopharmacology, 2013, 226, 357-369.	3.1	37
53	Mechanism of synapse redox stress in Okadaic acid (ICV) induced memory impairment: Role of NMDA receptor. Neurochemistry International, 2014, 76, 32-41.	3.8	37
54	Hypertension exacerbates predisposition to neurodegeneration and memory impairment in the presence of a neuroinflammatory stimulus: Protection by angiotensin converting enzyme inhibition. Pharmacology Biochemistry and Behavior, 2015, 133, 132-145.	2.9	37

#	Article	IF	CITATIONS
55	Ameliorative effect of Noni fruit extract on streptozotocin-induced memory impairment in mice. Behavioural Pharmacology, 2013, 24, 307-319.	1.7	31
56	Lead optimization studies towards the discovery of novel carbamates as potent AChE inhibitors for the potential treatment of Alzheimer's disease. Bioorganic and Medicinal Chemistry, 2012, 20, 6313-6320.	3.0	30
57	Perindopril Attenuates Lipopolysaccharide-Induced Amyloidogenesis and Memory Impairment by Suppression of Oxidative Stress and RAGE Activation. ACS Chemical Neuroscience, 2016, 7, 206-217.	3.5	28
58	Okadaic acid: a tool to study regulatory mechanisms for neurodegeneration and regeneration in Alzheimer′s disease. Neural Regeneration Research, 2015, 10, 365.	3.0	27
59	Okadaic acid induced neurotoxicity leads to central cholinergic dysfunction in rats. European Journal of Pharmacology, 2012, 690, 90-98.	3.5	26
60	A comparative study on oxidative stress induced by LPS and rotenone in homogenates of rat brain regions. Environmental Toxicology and Pharmacology, 2009, 27, 219-224.	4.0	24
61	Inhibitory Effect of Memantine on Streptozotocin-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Neurotrophic Factor Decline in Astrocytes. Molecular Neurobiology, 2016, 53, 6730-6744.	4.0	21
62	LPS induces mediators of neuroinflammation, cell proliferation, and GFAP expression in human astrocytoma cells U373MG: the anti-inflammatory and anti-proliferative effect of guggulipid. Neurological Sciences, 2014, 35, 409-414.	1.9	20
63	Guggulipid and Nimesulide Differentially Regulated Inflammatory Genes mRNA Expressions via Inhibition of NF-kB and CHOP Activation in LPS-Stimulated Rat Astrocytoma Cells, C6. Cellular and Molecular Neurobiology, 2011, 31, 755-764.	3.3	19
64	The effect of guggulipid and nimesulide on MPTP-induced mediators of neuroinflammation in rat astrocytoma cells, C6. Chemico-Biological Interactions, 2012, 200, 73-83.	4.0	19
65	Effect of ovariectomy and estrogen supplementation on brain acetylcholinesterase activity and passive-avoidance learning in rats. Canadian Journal of Physiology and Pharmacology, 2002, 80, 907-914.	1.4	13
66	Substituted propanolamines and alkylamines derived from fluoxetine as potent appetite suppressantsâ~†. Bioorganic and Medicinal Chemistry, 2005, 13, 1739-1747.	3.0	13
67	Evaluation of melatonin levels in saliva in gingivitis and periodontitis cases: A pilot study. Contemporary Clinical Dentistry, 2016, 7, 519.	0.7	13
68	A study to evaluate the effect of nootropic drug—Piracetam on DNA damage in leukocytes and macrophages. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2011, 726, 66-74.	1.7	12
69	Synthesis and appetite suppressant activity of 1-aryloxy-2-substituted aminomethyltetrahydronaphthalenes as conformationally rigid analogues of fluoxetine. Bioorganic and Medicinal Chemistry, 2006, 14, 2535-2544.	3.0	6
70	Substituted urea/thiourea derived from fluoxetine as potent appetite suppressants. Medicinal Chemistry Research, 2008, 17, 103-113.	2.4	4
71	Clial Activation and Synaptic Neurotoxicity in Alzheimer's disease: A Focus on Neuroinflammation. Pharmacologia, 2014, 5, 286-297.	0.3	3
72	Synthesis and biological evaluation of ester derivatives of indomethacin as selective COX-2 inhibitors. Medicinal Chemistry Research, 2012, 21, 2223-2228.	2.4	2

#	Article	IF	CITATIONS
73	Erratum to "Standardized Extract of <i>Bacopa monniera</i> Attenuates Okadaic Acid Induced Memory Dysfunction in Rats: Effect on Nrf2 Pathwayâ€ŧ Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-3.	1.2	2
74	Alteration in acetylcholinesterase glycosylation of rat brain in memory disorder. FASEB Journal, 2007, 21, .	0.5	0