Fabrice Odobel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1095693/publications.pdf

Version: 2024-02-01

194 papers 10,825 citations

23567 58 h-index 94 g-index

197 all docs

197 docs citations

197 times ranked

9583 citing authors

#	Article	IF	CITATIONS
1	New Photovoltaic Devices Based on the Sensitization of p-type Semiconductors: Challenges and Opportunities. Accounts of Chemical Research, 2010, 43, 1063-1071.	15.6	432
2	Sacrificial electron donor reagents for solar fuel production. Comptes Rendus Chimie, 2017, 20, 283-295.	0.5	362
3	Phosphonate-Based Bipyridine Dyes for Stable Photovoltaic Devices. Inorganic Chemistry, 2001, 40, 6073-6079.	4.0	303
4	Recent advances and future directions to optimize the performances of p-type dye-sensitized solar cells. Coordination Chemistry Reviews, 2012, 256, 2414-2423.	18.8	265
5	A pâ€Type NiOâ€Based Dyeâ€Sensitized Solar Cell with an Openâ€Circuit Voltage of 0.35â€V. Angewandte Che International Edition, 2009, 48, 4402-4405.	mie - 13.8	257
6	Recent Advances in the Sensitization of Wide-Band-Gap Nanostructured p-Type Semiconductors. Photovoltaic and Photocatalytic Applications. Journal of Physical Chemistry Letters, 2013, 4, 2551-2564.	4.6	235
7	Porphyrin dyes for TiO2 sensitization. Journal of Materials Chemistry, 2003, 13, 502-510.	6.7	224
8	Through-Space Charge Transfer in Rod-Like Molecules: Lessons from Theory. Journal of Physical Chemistry C, 2012, 116, 11946-11955.	3.1	222
9	Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors. Coordination Chemistry Reviews, 2004, 248, 1299-1316.	18.8	218
10	Sensitized Hole Injection of Phosphorus Porphyrin into NiO:Â Toward New Photovoltaic Devices. Journal of Physical Chemistry B, 2005, 109, 22928-22934.	2.6	188
11	Improved Photon-to-Current Conversion Efficiency with a Nanoporous p-Type NiO Electrode by the Use of a Sensitizer-Acceptor Dyad. Journal of Physical Chemistry C, 2008, 112, 1721-1728.	3.1	173
12	Sequence Selective Binding of Peptides by Artificial Receptors in Aqueous Solution. Journal of the American Chemical Society, 1998, 120, 3536-3537.	13.7	165
13	Photoinduced Electron- and Energy-Transfer Processes Occurring within Porphyrin-Metal-Bisterpyridyl Conjugates. Journal of the American Chemical Society, 1994, 116, 5679-5690.	13.7	162
14	Multistep Electron Transfer between Porphyrin Modules Assembled around a Ruthenium Center. Journal of the American Chemical Society, 1995, 117, 9461-9472.	13.7	153
15	Synthesis, photophysical and photovoltaic investigations of acceptor-functionalized perylene monoimide dyes for nickel oxide p-type dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 2075.	30.8	142
16	A comprehensive comparison of dye-sensitized NiO photocathodes for solar energy conversion. Physical Chemistry Chemical Physics, 2016, 18, 10727-10738.	2.8	135
17	Ruthenium polypyridine complexes as sensitizers in NiO based p-type dye-sensitized solar cells: Effects of the anchoring groups. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 219, 235-242.	3.9	117
18	Cobalt Polypyridyl-Based Electrolytes for p-Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 9772-9779.	3.1	115

#	Article	IF	Citations
19	P-Type Nitrogen-Doped ZnO Nanoparticles Stable under Ambient Conditions. Journal of the American Chemical Society, 2012, 134, 464-470.	13.7	115
20	CuGaO2: a promising alternative for NiO in p-type dye solar cells. Journal of Materials Chemistry, 2012, 22, 14353.	6.7	114
21	Monolayers as Models for Supported Catalysts:Â Zirconium Phosphonate Films Containing Manganese(III) Porphyrins. Journal of the American Chemical Society, 2002, 124, 4363-4370.	13.7	112
22	Coupled Sensitizerâ€"Catalyst Dyads: Electronâ€Transfer Reactions in a Peryleneâ€"Polyoxometalate Conjugate. Chemistry - A European Journal, 2009, 15, 3130-3138.	3.3	112
23	Synthesis and Comprehensive Characterizations of Newcis-RuL2X2(X = Cl, CN, and NCS) Sensitizers for Nanocrystalline TiO2Solar Cell Using Bis-Phosphonated Bipyridine Ligands (L). Inorganic Chemistry, 2003, 42, 6655-6666.	4.0	109
24	Intramolecular Electron Transfer Reactions Observed for Dawson-Type Polyoxometalates Covalently Linked to Porphyrin Residues. Journal of Physical Chemistry C, 2009, 113, 5834-5842.	3.1	104
25	Syntheses and properties of core-substituted naphthalene bisimides with aryl ethynyl or cyano groups. Journal of Materials Chemistry, 2007, 17, 4139.	6.7	102
26	Panchromatic Trichromophoric Sensitizer for Dye-Sensitized Solar Cells Using Antenna Effect. Organic Letters, 2011, 13, 3944-3947.	4.6	101
27	Synthesis of Oligothiophene-Bridged Bisporphyrins and Study of the Linkage Dependence of the Electronic Coupling. Chemistry - A European Journal, 2002, 8, 3027.	3.3	94
28	Very large acceleration of the photoinduced electron transfer in a Ru(bpy)3–naphthalene bisimide dyad bridged on the naphthyl core. Chemical Communications, 2007, , 64-66.	4.1	93
29	Role of the Triiodide/Iodide Redox Couple in Dye Regeneration in p-Type Dye-Sensitized Solar Cells. Langmuir, 2012, 28, 6485-6493.	3.5	92
30	Heteroleptic bis-diimine copper(I) complexes for applications in solar energy conversion. Comptes Rendus Chimie, 2016, 19, 79-93.	0.5	92
31	Accumulative Charge Separation Inspired by Photosynthesis. Journal of the American Chemical Society, 2010, 132, 17977-17979.	13.7	91
32	Heteroleptic copper(<scp>i</scp>)–polypyridine complexes as efficient sensitizers for dye sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 9944-9947.	10.3	90
33	Recent advances and insights in dye-sensitized NiO photocathodes for photovoltaic devices. Journal of Materials Chemistry A, 2017, 5, 21077-21113.	10.3	90
34	Comparison of Interfacial Electron Transfer through Carboxylate and Phosphonate Anchoring Groupsâ€. Journal of Physical Chemistry A, 2007, 111, 6832-6842.	2.5	88
35	Tuning the size and color of the p-type wide band gap delafossite semiconductor CuGaO2 with ethylene glycol assisted hydrothermal synthesis. Journal of Materials Chemistry, 2008, 18, 5647.	6.7	87
36	Photo-induced redox catalysis for proton reduction to hydrogen with homogeneous molecular systems using rhodium-based catalysts. Coordination Chemistry Reviews, 2015, 304-305, 20-37.	18.8	87

3

#	Article	IF	CITATIONS
37	Simple and Reproducible Procedure to Prepare Self-Nanostructured NiO Films for the Fabrication of P-Type Dye-Sensitized Solar Cells. Inorganic Chemistry, 2009, 48, 8245-8250.	4.0	85
38	Molecular devices featuring sequential photoinduced charge separations for the storage of multiple redox equivalents. Coordination Chemistry Reviews, 2011, 255, 2578-2593.	18.8	85
39	Synthesis of new perylene imide dyes and their photovoltaic performances in nanocrystalline TiO2 dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197, 156-169.	3.9	84
40	A porphyrin–polyoxometallate bio-inspired mimic for artificial photosynthesis. Physical Chemistry Chemical Physics, 2009, 11, 8767.	2.8	84
41	First application of the HETPHEN concept to new heteroleptic bis(diimine) copper(i) complexes as sensitizers in dye sensitized solar cells. Dalton Transactions, 2013, 42, 10818.	3.3	82
42	An Efficient Ru ^{II} â€"Rh ^{III} â€"Ru ^{II} Polypyridyl Photocatalyst for Visibleâ€Lightâ€Driven Hydrogen Production in Aqueous Solution. Angewandte Chemie - International Edition, 2014, 53, 1654-1658.	13.8	82
43	Second Generation of Diketopyrrolopyrrole Dyes for NiO-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 7923-7940.	3.1	77
44	Sensitization of TiO2 by Phosphonate-Derivatized Proline Assemblies. Inorganic Chemistry, 1999, 38, 3665-3669.	4.0	76
45	Origin of the Black Color of NiO Used as Photocathode in p-Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 22478-22483.	3.1	76
46	Multichromophoric Sensitizers Based on Squaraine for NiO Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 103-113.	3.1	75
47	Zirconium Phosphonate Frameworks Covalently Pillared with a Bipyridine Moiety. Chemistry of Materials, 2001, 13, 163-173.	6.7	74
48	Long-Lived Charge Separated State in NiO-Based p-Type Dye-Sensitized Solar Cells with Simple Cyclometalated Iridium Complexes. Journal of Physical Chemistry Letters, 2014, 5, 2254-2258.	4.6	73
49	Mechanisms of Surface Electron Transfer. Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 1998, 120, 13248-13249.	13.7	72
50	Diketopyrrolopyrrole derivatives for efficient NiO-based dye-sensitized solar cells. Chemical Communications, 2013, 49, 8018.	4.1	72
51	Multistep Electron Transfer in a Porphyrin-Ruthenium(II) Bis(terpyridyl)-Porphyrin Triad. Journal of the American Chemical Society, 1994, 116, 5481-5482.	13.7	71
52	Synthesis of new azido porphyrins and their reactivity in copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction with alkynes. Tetrahedron Letters, 2007, 48, 6518-6522.	1.4	70
53	Supramolecular light harvesting antennas to enhance absorption cross-section in dye-sensitized solar cells. Chemical Communications, 2012, 48, 675-677.	4.1	69
54	A Blue Diketopyrrolopyrrole Sensitizer with High Efficiency in Nickelâ€Oxideâ€based Dyeâ€Sensitized Solar Cells. ChemSusChem, 2017, 10, 2618-2625.	6.8	69

#	Article	IF	Citations
55	A compact diketopyrrolopyrrole dye as efficient sensitizer in titanium dioxide dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 226, 9-15.	3.9	66
56	A Molecular Tetrad That Generates a High-Energy Charge-Separated State by Mimicking the Photosynthetic Z-Scheme. Journal of the American Chemical Society, 2016, 138, 3752-3760.	13.7	66
57	State-Selective Electron Transfer in an Unsymmetric Acceptorâ^2/Zn(II)porphyrinâ^2Acceptor Triad: Toward a Controlled Directionality of Electron Transfer from the Porphyrin S ₂ and S ₁ States as a Basis for a Molecular Switch. Journal of Physical Chemistry A, 2010, 114, 1709-1721.	2.5	62
58	New Heteroleptic Bis-Phenanthroline Copper(I) Complexes with Dipyridophenazine or Imidazole Fused Phenanthroline Ligands: Spectral, Electrochemical, and Quantum Chemical Studies. Inorganic Chemistry, 2011, 50, 11309-11322.	4.0	60
59	Photoinduced Electron Transfer in Platinum(II) Terpyridinyl Acetylide Complexes Connected to a Porphyrin Unit. Inorganic Chemistry, 2005, 44, 4806-4817.	4.0	59
60	Rotaxanes and other transition metal-assembled porphyrin arrays for long-range photoinduced charge separation. Coordination Chemistry Reviews, 1998, 178-180, 1299-1312.	18.8	58
61	Ultrafast recombination for NiO sensitized with a series of perylene imide sensitizers exhibiting Marcus normal behaviour. Chemical Communications, 2012, 48, 678-680.	4.1	57
62	[Rh ^{III} (dmbpy) ₂ Cl ₂] ⁺ as a Highly Efficient Catalyst for Visibleâ€Lightâ€Driven Hydrogen Production in Pure Water: Comparison with Other Rhodium Catalysts. Chemistry - A European Journal, 2013, 19, 782-792.	3.3	56
63	Photocathode functionalized with a molecular cobalt catalyst for selective carbon dioxide reduction in water. Nature Communications, 2020, 11, 3499.	12.8	56
64	Singleâ€Step Electron Transfer on the Nanometer Scale: Ultraâ€Fast Charge Shift in Strongly Coupled Zinc Porphyrin–Gold Porphyrin Dyads. Chemistry - A European Journal, 2008, 14, 3467-3480.	3.3	54
65	Bio-inspired artificial light-harvesting antennas for enhancement of solar energy capture in dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 2041.	30.8	54
66	Anisotropic energy transfer in crystalline chromophore assemblies. Nature Communications, 2018, 9, 4332.	12.8	54
67	Preparations and Characterizations of Bichromophoric Systems Composed of a Ruthenium Polypyridine Complex Connected to a Difluoroborazaindacene or a Zinc Phthalocyanine Chromophore. Inorganic Chemistry, 2005, 44, 5600-5611.	4.0	53
68	Heteroleptic diimine copper(i) complexes with large extinction coefficients: synthesis, quantum chemistry calculations and physico-chemical properties. Dalton Transactions, 2013, 42, 14628.	3.3	53
69	Diketopyrrolopyrrole–Porphyrin Conjugates as Broadly Absorbing Sensitizers for Dyeâ€ S ensitized Solar Cells. ChemSusChem, 2012, 5, 1568-1577.	6.8	52
70	Facile and efficient syntheses of 2,2′-bipyridine-based bis(phosphonic) acids. Tetrahedron Letters, 1998, 39, 3689-3692.	1.4	51
71	Accumulative electron transfer: Multiple charge separation in artificial photosynthesis. Faraday Discussions, 2012, 155, 233-252.	3.2	51
72	Characterization of screen printed carbon counter electrodes for Co(II)/(III) mediated photoelectrochemical cells. Electrochimica Acta, 2010, 55, 6517-6522.	5.2	48

#	Article	IF	CITATIONS
73	Isoindigo derivatives for application in p-type dye sensitized solar cells. RSC Advances, 2015, 5, 85530-85539.	3.6	48
74	Strongly coupled zinc phthalocyanine–tin porphyrin dyad performing ultra-fast single step charge separation over a 34 à distance. Chemical Communications, 2007, , 4629.	4.1	47
75	Impact of Mg Doping on Performances of CuGaO ₂ Based p-Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 54-59.	3.1	47
76	Synthesis, photovoltaic performances and TD-DFT modeling of push–pull diacetylide platinum complexes in TiO ₂ based dye-sensitized solar cells. Dalton Transactions, 2014, 43, 11233-11242.	3.3	47
77	CuO nanomaterials for p-type dye-sensitized solar cells. RSC Advances, 2016, 6, 112765-112770.	3.6	46
78	Diketopyrrolopyrrole-zinc porphyrin, a tuned panchromatic association for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, $1,7572$.	10.3	45
79	Synthesis and properties of push–pull porphyrins as sensitizers for NiO based dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 3908-3917.	10.3	44
80	Distance-independent photoinduced energy transfer over 1.1 to 2.3 nm in ruthenium trisbipyridine–fullerene assemblies. New Journal of Chemistry, 2005, 29, 1272.	2.8	43
81	Hole conductivity and acceptor density of p-type CuGaO2 nanoparticles determined by impedance spectroscopy: The effect of Mg doping. Electrochimica Acta, 2013, 113, 570-574.	5.2	43
82	Comparison of the photoelectrochemical properties of RDS NiO thin films for p-type DSCs with different organic and organometallic dye-sensitizers and evidence of a direct correlation between cell efficiency and charge recombination. Journal of Solid State Electrochemistry, 2015, 19, 975-986.	2.5	43
83	Synthesis and Nonlinear Optical Properties of a Peripherally Functionalized Hyperbranched Polymer by DR1 Chromophores. ACS Applied Materials & Interfaces, 2009, 1, 1799-1806.	8.0	42
84	Toward Efficient Solid-State p-Type Dye-Sensitized Solar Cells: The Dye Matters. Journal of Physical Chemistry C, 2017, 121, 129-139.	3.1	42
85	Full Organic Aqueous Battery Based on TEMPO Small Molecule with Millimeter-Thick Electrodes. Chemistry of Materials, 2019, 31, 1869-1880.	6.7	42
86	New Cross-Linkable Polymers with Huisgen Reaction Incorporating High $\hat{1}^1\!\!/\hat{4}^2$ Chromophores for Second-Order Nonlinear Optical Applications. Chemistry of Materials, 2012, 24, 1143-1157.	6.7	41
87	Copper borate as a photocathode in p-type dye-sensitized solar cells. RSC Advances, 2016, 6, 1549-1553.	3.6	41
88	Dual Anion–Cation Reversible Insertion in a Bipyridinium–Diamide Triad as the Negative Electrode for Aqueous Batteries. Advanced Energy Materials, 2018, 8, 1701988.	19.5	41
89	Solar electricity and fuel production with perylene monoimide dye-sensitised TiO ₂ in water. Chemical Science, 2019, 10, 2758-2766.	7.4	40
90	A cheap and efficient method for selective para-iodination of aniline derivatives. Tetrahedron Letters, 2005, 46, 5421-5423.	1.4	38

#	Article	IF	Citations
91	Long-Lived, Charge-Shift States in Heterometallic, Porphyrin-Based Dendrimers Formed via Click Chemistry. Journal of Physical Chemistry A, 2011, 115, 5069-5080.	2.5	38
92	Dye-Sensitized Photoelectrosynthesis Cells for Benzyl Alcohol Oxidation Using a Zinc Porphyrin Sensitizer and TEMPO Catalyst. ACS Catalysis, 2021, 11, 12075-12086.	11.2	38
93	Long-Range Electron Transfer in Zinc-Phthalocyanine-Oligo(Phenylene-ethynylene)-Based Donor-Bridge-Acceptor Dyads. Inorganic Chemistry, 2012, 51, 11500-11512.	4.0	37
94	Long-Range Charge Separation in a Ferrocene–(Zinc Porphyrin)–Naphthalenediimide Triad. Asymmetric Role of 1,2,3-Triazole Linkers. Journal of Physical Chemistry C, 2013, 117, 19334-19345.	3.1	37
95	Inverse Opal CuCrO ₂ Photocathodes for H ₂ Production Using Organic Dyes and a Molecular Ni Catalyst. ACS Catalysis, 2019, 9, 9530-9538.	11.2	37
96	Synthesis and photoelectrochemical properties of ruthenium bisterpyridine sensitizers functionalized with a thienyl phosphonic acid moiety. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 192, 56-65.	3.9	36
97	Chargeâ€Transfer State and Large First Hyperpolarizability Constant in a Highly Electronically Coupled Zinc and Gold Porphyrin Dyad. Chemistry - A European Journal, 2009, 15, 9058-9067.	3.3	36
98	Preparation and characterization of second order non-linear optical properties of new "push–pull― platinum complexes. Dalton Transactions, 2009, , 4538.	3.3	36
99	Engineering Processes at the Interface of pâ€Semiconductor for Enhancing the Open Circuit Voltage in pâ€Type Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2017, 7, 1601776.	19.5	36
100	An Efficient Synthetic Approach to Highly Conjugated Porphyrin-Based Assemblies Containing a Bipyridine Moiety. Organic Letters, 2000, 2, 131-133.	4.6	35
101	Inorganic Molybdenum Clusters as Lightâ€Harvester in All Inorganic Solar Cells: A Proof of Concept. ChemistrySelect, 2016, 1, 2284-2289.	1.5	35
102	Ultrafast and slow charge recombination dynamics of diketopyrrolopyrrole–NiO dye sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 18515-18527.	2.8	35
103	A new crosslinkable system based on thermal Huisgen reaction to enhance the stability of electro-optic polymers. Chemical Communications, 2009, , 1825.	4.1	34
104	Shape selectivity for alkane hydroxylation with a new class of phosphonate-based heterogenised manganese porphyrins. New Journal of Chemistry, 1998, 22, 901-905.	2.8	33
105	Push–pull ruthenium diacetylide complexes: new dyes for p-type dye-sensitized solar cells. RSC Advances, 2016, 6, 19928-19936.	3.6	33
106	Palladium Porphyrin Containing Zirconium Phosphonate Langmuirâ^'Blodgett Films. Chemistry of Materials, 1999, 11, 965-976.	6.7	32
107	Molecular Energy Transfer across Oxide Surfaces. Journal of Physical Chemistry B, 2001, 105, 8895-8904.	2.6	32
108	Hydroporphyrins as tumour photosensitizers: synthesis and photophysical studies of 2,3-Dihydro-5,15-di(3,5-dihydroxyphenyl) porphyrin. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 833-835.	2.2	31

#	Article	IF	Citations
109	Ruthenium Sensitizer Functionalized by Acetylacetone Anchoring Groups for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 8652-8660.	3.1	31
110	Exploring the application of new carbazole based dyes as effective p-type photosensitizers in dye-sensitized solar cells. Solar Energy, 2017, 157, 1064-1073.	6.1	30
111	Excitonically Coupled States in Crystalline Coordination Networks. Chemistry - A European Journal, 2017, 23, 14316-14322.	3.3	30
112	Ruthenium bis-terpyridine complexes connected to an oligothiophene unit for dry dye-sensitised solar cells. Photochemical and Photobiological Sciences, 2005, 4, 200.	2.9	29
113	Synthesis of new crosslinkable co-polymers containing a push–pull zinc porphyrin for non-linear optical applications. Tetrahedron, 2005, 61, 10113-10121.	1.9	27
114	Acetylacetone anchoring group for NiO-based dye-sensitized solar cell. Dyes and Pigments, 2014, 105, 174-179.	3.7	27
115	Molecular-structure control of electron transfer dynamics of push–pull porphyrins as sensitizers for NiO based dye sensitized solar cells. RSC Advances, 2016, 6, 77184-77194.	3.6	27
116	Synthesis and properties of new benzothiadiazole-based push-pull dyes for p-type dye sensitized solar cells. Dyes and Pigments, 2018, 148, 154-166.	3.7	27
117	Synthesis and Anticancer Activity of Gold Porphyrin Linked to Malonate Diamine Platinum Complexes. Inorganic Chemistry, 2019, 58, 12395-12406.	4.0	27
118	Design of Efficient Photoinduced Charge Separation in Donor–Copper(I)–Acceptor Triad. Journal of Physical Chemistry C, 2014, 118, 28388-28400.	3.1	26
119	Cu2O@CuO core-shell nanoparticles as photocathode for p-type dye sensitized solar cell. Journal of Alloys and Compounds, 2018, 769, 605-610.	5.5	26
120	Very Fast Single-Step Photoinduced Charge Separation in Zinc Porphyrin Bridged to a Gold Porphyrin by a Bisethynyl Quaterthiophene. Inorganic Chemistry, 2009, 48, 518-526.	4.0	25
121	Tuning Optical Properties by Controlled Aggregation: Electroluminescence Assisted by Thermallyâ€Activated Delayed Fluorescence from Thin Films of Crystalline Chromophores. Chemistry - A European Journal, 2020, 26, 17016-17020.	3.3	25
122	Digital printing of efficient dye-sensitized solar cells (DSSCs). Solar Energy, 2020, 199, 92-99.	6.1	24
123	Postfunctionalization of poly(propargyl methacrylate) using copper catalyzed 1,3â€dipolar Huisgen cycloaddition: An easy route to electroâ€optic materials. Journal of Polymer Science Part A, 2009, 47, 5652-5660.	2.3	23
124	Intermixed Cation–Anion Aqueous Battery Based on an Extremely Fast and Longâ€Cycling Diâ€Block Bipyridinium–Naphthalene Diimide Oligomer. Advanced Energy Materials, 2019, 9, 1803688.	19.5	22
125	Efficient osmium sensitizers containing $2,2\hat{a}\in^2$ -bipyridine- $4,4\hat{a}\in^2$ -bisphosphonic acid ligand. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 166, 99-106.	3.9	21
126	Redox properties of hybrid Dawson type polyoxometalates disubstituted with organo-silyl or organo-phosphoryl moieties. Polyhedron, 2008, 27, 688-692.	2.2	21

#	Article	IF	Citations
127	Click made porphyrin–corrole dyad: a system for photo-induced charge separation. Dalton Transactions, 2015, 44, 13473-13479.	3.3	21
128	Infra-red photoresponse of mesoscopic NiO-based solar cells sensitized with PbS quantum dot. Scientific Reports, 2016, 6, 24908.	3.3	21
129	Synthesis of Ni-poor NiO nanoparticles for p-DSSC applications. Solid State Sciences, 2016, 54, 37-42.	3.2	21
130	Electrochemical Generation and Spectroscopic Characterization of the Key Rhodium(III) Hydride Intermediates of Rhodium Poly(bipyridyl) H ₂ -Evolving Catalysts. Inorganic Chemistry, 2018, 57, 11225-11239.	4.0	21
131	Comparative studies of new pyranylidene-based sensitizers bearing single or double anchoring groups for dye-sensitized solar cells. Solar Energy, 2020, 205, 310-319.	6.1	21
132	Improved efficiency of a thiophene linked ruthenium polypyridine complex for dry dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 186, 135-142.	3.9	20
133	Photoinduced Electron Transfer in Zn(II)porphyrinâ^Bridgeâ^Pt(II)acetylide Complexes: Variation in Rate with Anchoring Group and Position of the Bridge. Inorganic Chemistry, 2010, 49, 9823-9832.	4.0	20
134	Scope and limitation of the copper free thermal Huisgen cross-linking reaction to stabilize the chromophores orientation in electro-optic polymers. Polymer Chemistry, 2011, 2, 157-167.	3.9	20
135	The first dye-sensitized solar cell with p-type LaOCuS nanoparticles as a photocathode. RSC Advances, 2015, 5, 60148-60151.	3.6	20
136	Determining the most promising anchors for CuSCN: ab initio insights towards p-type DSSCs. Journal of Materials Chemistry A, 2016, 4, 2217-2227.	10.3	20
137	Enhancing Selectivity and Kinetics in Oxidative Photocyclization by Supramolecular Control. Angewandte Chemie - International Edition, 2018, 57, 13662-13665.	13.8	20
138	A computational mechanistic investigation of hydrogen production in water using the [RhIII(dmbpy)2Cl2]+/[RuII(bpy)3]2+/ascorbic acid photocatalytic system. Physical Chemistry Chemical Physics, 2015, 17, 10497-10509.	2.8	19
139	Supramolecular architectures featuring the antenna effect in solid state DSSCs. Sustainable Energy and Fuels, 2017, 1, 387-395.	4.9	19
140	Photoinduced electron transfer in ruthenium(ii) trisbipyridine complexes connected to a naphthalenebisimidevia an oligo(phenyleneethynylene) spacer. New Journal of Chemistry, 2009, 33, 408-416.	2.8	18
141	Synthesis and second-order nonlinear optical properties of a crosslinkable functionalized hyperbranched polymer. European Polymer Journal, 2012, 48, 116-126.	5.4	18
142	Anchoring groups for dyes in p-DSSC application: insights from DFT. Journal of Molecular Modeling, 2016, 22, 289.	1.8	18
143	New luminescent copper(I) complexes with extended π-conjugation. Polyhedron, 2018, 140, 42-50.	2.2	18
144	Photoinduced Energy Transfer between Ruthenium and Osmium tris-Bipyridine Complexes Covalently Pillared into \hat{I}^3 -ZrP. Langmuir, 2003, 19, 30-39.	3.5	17

#	Article	IF	CITATIONS
145	Electronic interactions and energy transfer in oligothiophene-linked bis-porphyrins. Photochemical and Photobiological Sciences, 2006, 5, 828-834.	2.9	17
146	Free radical copolymerization of $\hat{l}\pm\hat{a}$ fluoroacrylates for optical materials: Synthesis and characterization. Journal of Polymer Science Part A, 2009, 47, 1403-1411.	2.3	17
147	Holeâ€Transfer Dyads and Triads Based on Perylene Monoimide, Quaterthiophene, and Extended Tetrathiafulvalene. Chemistry - A European Journal, 2010, 16, 9140-9153.	3.3	17
148	Amplification of light collection in solid-state dye-sensitized solar cells via the antenna effect through supramolecular assembly. Physical Chemistry Chemical Physics, 2015, 17, 9910-9918.	2.8	17
149	Synthesis and properties of novel pyranylidene-based organic sensitizers for dye-sensitized solar cells. Dyes and Pigments, 2019, 171, 107747.	3.7	17
150	Highly coupled two-component systems consisting of porphyrins attached to a rhodium(III) bis-terpyridine complex. Tetrahedron Letters, 1993, 34, 8113-8116.	1.4	16
151	Synthesis and characterization of poly(fluorinated vinyl etherâ€ <i>altâ€ŧert</i> â€butyl) Tj ETQq1 1 0.784314 rg	BT/Qverlo	ock 10 Tf 50 5
152	New D-π-A-conjugated organic sensitizers based on α-pyranylidene donors for dye-sensitized solar cells. Tetrahedron Letters, 2017, 58, 995-999.	1.4	16
153	Antenna Effect in BODIPY-(Zn)Porphyrin Entities Promotes H ₂ Evolution in Dye-Sensitized Photocatalytic Systems. ACS Applied Energy Materials, 2021, 4, 10042-10049.	5.1	16
154	A Comparative Investigation of the Role of the Anchoring Group on Perylene Monoimide Dyes in NiOâ∈Based Dyeâ∈Sensitized Solar Cells. ChemSusChem, 2020, 13, 1844-1855.	6.8	16
155	Study of the cross-linking mechanism of a copolymer containing an electrooptic chromophore. Journal of Physical Organic Chemistry, 2005, 18, 1050-1058.	1.9	15
156	Solid-state dye-sensitized TiO2 solar cells based on a sensitizer covalently wired to a hole conducting polymer. Photochemical and Photobiological Sciences, 2008, 7, 789-793.	2.9	15
157	Extremely long-distance electron transfer in porphyrin or phthalocyanine systems directly functionalized by an oligo(phenyleneethynylene) spacer. Comptes Rendus Chimie, 2009, 12, 437-449.	0.5	14
158	Excited-state nature in benzodifuranone dyes: Insights from ab initio simulations. Dyes and Pigments, 2012, 92, 1144-1152.	3.7	14
159	Solventâ€Templated Electrodeposition of Mesoporous Nickel Oxide Layers for Solar Cell Applications. ChemElectroChem, 2017, 4, 2618-2625.	3.4	14
160	Experimental and Theoretical Evidences of p-Type Conductivity in Nickel Carbodiimide Nanoparticles with a Delafossite Structure Type. Inorganic Chemistry, 2017, 56, 7922-7927.	4.0	14
161	Simpler and more efficient strategy to stabilize the chromophore orientation in electro-optic polymers with copper-free thermal Huisgen reaction. Polymer, 2011, 52, 2286-2294.	3.8	13
162	Effect of the triazole ring in zinc porphyrin-fullerene dyads on the charge transfer processes in NiO-based devices. Physical Chemistry Chemical Physics, 2018, 20, 24477-24489.	2.8	13

#	Article	IF	Citations
163	Redox-driven porphyrin based systems for new luminescent molecular switches. Dalton Transactions, 2018, 47, 8364-8374.	3.3	13
164	Preparation of novel highly conjugated bis-porphyrin bridged with a polyene linker. Journal of Porphyrins and Phthalocyanines, 2003, 07, 207-213.	0.8	12
165	Application of Poly(3â€hexylthiophene) Functionalized with an Anchoring Group in Dyeâ€sensitized Solar Cells. Macromolecular Rapid Communications, 2011, 32, 1190-1194.	3.9	12
166	Synergetic anticancer activity of gold porphyrin appended to phenyl tin malonate organometallic complexes. Dalton Transactions, 2021, 50, 4583-4592.	3.3	12
167	Size dependence of efficiency of PbS quantum dots in NiO-based dye sensitised solar cells and mechanistic charge transfer investigation. Nanoscale, 2017, 9, 15566-15575.	5.6	11
168	Electrolytic electrospray ionization mass spectrometry of quaterthiophene-bridged bisporphyrins: beyond the identification tool. Journal of Mass Spectrometry, 2005, 40, 628-635.	1.6	10
169	Single Crystalline-like and Nanostructured TiO2Photoanodes for Dye Sensitized Solar Cells Synthesized by Reactive Magnetron Sputtering at Glancing Angle. Journal of Physical Chemistry C, 2018, 122, 20661-20668.	3.1	10
170	Synthesis of pâ€type Nâ€doped TiO ₂ thin films by coâ€reactive magnetron sputtering. Plasma Processes and Polymers, 2020, 17, 1900203.	3.0	10
171	Structures and spectral properties of heteroleptic copper (I) complexes: A theoretical study based on density functional theory. Comptes Rendus Chimie, 2012, 15, 255-266.	0.5	9
172	Promising anchoring groups for ZnOâ€based hybrid materials: A periodic density functional theory investigation. International Journal of Quantum Chemistry, 2012, 112, 2062-2071.	2.0	9
173	Photoelectrochemical properties of dyads composed of porphyrin/ruthenium catalyst grafted on metal oxide semiconductors. Dyes and Pigments, 2021, 185, 108908.	3.7	9
174	Preparation of a New Electro-optic Polymer Cross-Linkable via Copper-Free Thermal Huisgen Cyclo-Addition and Fabrication of Optical Waveguides by Reactive Ion Etching. ACS Applied Materials & Amp; Interfaces, 2011, 3, 2092-2098.	8.0	8
175	Tris-bipyridine based dinuclear ruthenium(<scp>ii</scp>)–osmium(<scp>iii</scp>) complex dyads grafted onto TiO ₂ nanoparticles for mimicking the artificial photosynthetic Z-scheme. Physical Chemistry Chemical Physics, 2017, 19, 4778-4786.	2.8	8
176	CuSCN Nanowires as Electrodes for p-Type Quantum Dot Sensitized Solar Cells: Charge Transfer Dynamics and Alumina Passivation. Journal of Physical Chemistry C, 2018, 122, 5161-5170.	3.1	8
177	Improved efficiency of PbS quantum dot sensitized NiO photocathodes with naphthalene diimide electron acceptor bound to the surface of the nanocrystals. Solar Energy Materials and Solar Cells, 2018, 181, 71-76.	6.2	8
178	Synthesis and characterization of a novel nonlinear optical hyperbranched polymer containing a highly performing chromophore. Polymers for Advanced Technologies, 2013, 24, 473-477.	3.2	6
179	Trans -disubstituted benzodiazaporphyrin: A promising hybrid dye between porphyrin and phthalocyanine for application in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 330, 186-194.	3.9	6
180	Study of Cytotoxic and Photodynamic Activities of Dyads Composed of a Zinc Phthalocyanine Appended to an Organotin. Pharmaceuticals, 2021, 14, 413.	3.8	6

#	Article	IF	CITATIONS
181	Pushâ€Pull Phenoxazineâ€Based Sensitizers for pâ€Type DSSCs: Effect of Acceptor Units on Photovoltaic Performance. ChemSusChem, 2022, 15, .	6.8	6
182	Extension of the charge separated-state lifetime by supramolecular association of a tetrathiafulvaleneelectron donor to a zinc/gold bisporphyrin. Dalton Transactions, 2010, 39, 1450-1452.	3.3	5
183	Click Chemistry on NiO Photocathode to Postfunctionalize a Diketopyrrolopyrrole Sensitizer by Naphthalene Diimide Electron Acceptor. ACS Applied Energy Materials, 2021, 4, 2629-2636.	5.1	5
184	Molecular Engineering of Efficient Dyes for p-Type Semiconductor Sensitization. Springer Series in Materials Science, 2014, , 215-246.	0.6	4
185	Antenna Doping: The Key for Achieving Efficient Optical Wavelength Conversion in Crystalline Chromophoric Heterolayers. Advanced Materials Interfaces, 2021, 8, 2100262.	3.7	4
186	Carbon Dioxide Reduction to Methanol with a Molecular Cobaltâ€Catalystâ€Loaded Porous Carbon Electrode Assisted by a CIGS Photovoltaic Cell**. ChemPhotoChem, 2021, 5, 705-710.	3.0	4
187	Mutual influence of gold and silver nanoparticles on Tris-(2,2′bipyridine)-Ru(II) core complexes: Post-functionalization processes, optical and electrochemical investigations. Applied Surface Science, 2020, 499, 143847.	6.1	3
188	Molecular Triad Containing a TEMPO Catalyst Grafted on Mesoporous Indium Tin Oxide as a Photoelectrocatalytic Anode for Visible Lightâ€Driven Alcohol Oxidation. ChemSusChem, 2021, 14, 2902-2913.	6.8	3
189	Chemistry on the electrodes: post-functionalization and stability enhancement of anchored dyes on mesoporous metal oxide photoelectrochemical cells with copper-free Huisgen cycloaddition reaction. Journal of Materials Chemistry A, 2020, 8, 12633-12640.	10.3	2
190	Photoinduced Delamination of Metal–Organic Framework Thin Films by Spatioselective Generation of Reactive Oxygen Species. ACS Applied Materials & Samp; Interfaces, 2021, 13, 57768-57773.	8.0	2
191	Polymer poling characterization using second harmonic generation (SHG)., 2006, 6192, 475.		1
192	Structure optimization of electro-optic polymer waveguides for low half-wave voltage modulators. , 2010, , .		1
193	Aqueous Batteries: Dual Anion–Cation Reversible Insertion in a Bipyridinium–Diamide Triad as the Negative Electrode for Aqueous Batteries (Adv. Energy Mater. 8/2018). Advanced Energy Materials, 2018, 8, 1870036.	19.5	1
194	A Cheap and Efficient Method for Selective para-lodination of Aniline Derivatives ChemInform, 2005, 36, no.	0.0	0