Rosemary Loria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10954681/publications.pdf Version: 2024-02-01

ROSEMARY LODIA

#	Article	IF	CITATIONS
1	PLANT PATHOGENICITY IN THE GENUS STREPTOMYCES. Plant Disease, 1997, 81, 836-846.	1.4	260
2	Evolution of Plant Pathogenicity inStreptomyces. Annual Review of Phytopathology, 2006, 44, 469-487.	7.8	260
3	Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. Nature, 2004, 429, 79-82.	27.8	225
4	The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity. Molecular Microbiology, 2000, 38, 794-804.	2.5	197
5	A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species. Molecular Microbiology, 2004, 55, 1025-1033.	2.5	178
6	An Arabidopsis Mutant Resistant to Thaxtomin A, a Cellulose Synthesis Inhibitor from Streptomyces Species[W]. Plant Cell, 2003, 15, 1781-1794.	6.6	177
7	Cytochrome P450–catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis. Nature Chemical Biology, 2012, 8, 814-816.	8.0	172
8	Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces. Antonie Van Leeuwenhoek, 2008, 94, 3-10.	1.7	124
9	Differential Production of Thaxtomins by PathogenicStreptomycesSpecies In Vitro. Phytopathology, 1995, 85, 537.	2.2	124
10	The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in <i>Streptomyces scabies</i> . Molecular Microbiology, 2007, 66, 633-642.	2.5	102
11	nec1, a Gene Conferring a Necrogenic Phenotype, Is Conserved in Plant-Pathogenic Streptomyces spp. and Linked to a Transposase Pseudogene. Molecular Plant-Microbe Interactions, 1998, 11, 960-967.	2.6	101
12	<i>Streptomyces scabies</i> 87-22 Contains a Coronafacic Acid-Like Biosynthetic Cluster That Contributes to Plant–Microbe Interactions. Molecular Plant-Microbe Interactions, 2010, 23, 161-175.	2.6	101
13	A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Systematic and Applied Microbiology, 2016, 39, 252-259.	2.8	97
14	Thaxtomin A: evidence for a plant cell wall target. Physiological and Molecular Plant Pathology, 2002, 60, 1-8.	2.5	93
15	What does it take to be a plant pathogen: genomic insights from Streptomyces species. Antonie Van Leeuwenhoek, 2010, 98, 179-194.	1.7	92
16	Postharvest Application of Organic and Inorganic Salts for Suppression of Silver Scurf on Potato Tubers. Plant Disease, 1998, 82, 213-217.	1.4	88
17	Title is missing!. Journal of Chemical Ecology, 1999, 25, 2687-2701.	1.8	86
18	Horizontal Transfer of the Plant Virulence Gene, nec1 , and Flanking Sequences among Genetically Distinct Streptomyces Strains in the Diastatochromogenes Cluster. Applied and Environmental Microbiology, 2002, 68, 738-744.	3.1	84

ROSEMARY LORIA

#	Article	IF	CITATIONS
19	Cello-oligosaccharides released from host plants induce pathogenicity in scab-causing Streptomyces species. Physiological and Molecular Plant Pathology, 2007, 71, 18-25.	2.5	82
20	Virulence mechanisms of Gram-positive plant pathogenic bacteria. Current Opinion in Plant Biology, 2008, 11, 449-456.	7.1	73
21	The twin arginine protein transport pathway exports multiple virulence proteins in the plant pathogen <i>Streptomyces scabies</i> . Molecular Microbiology, 2010, 77, 252-271.	2.5	71
22	Streptomyces turgidiscabies Possesses a Functional Cytokinin Biosynthetic Pathway and Produces Leafy Galls. Molecular Plant-Microbe Interactions, 2007, 20, 751-758.	2.6	68
23	Plant-Pathogenic Streptomyces Species Produce Nitric Oxide Synthase-Derived Nitric Oxide inÂResponse to Host Signals. Chemistry and Biology, 2008, 15, 43-50.	6.0	66
24	The Cellobiose Sensor CebR Is the Gatekeeper of Streptomyces scabies Pathogenicity. MBio, 2015, 6, e02018.	4.1	66
25	Actinobacterial endophytes for improved crop performance. Australasian Plant Pathology, 2007, 36, 524.	1.0	62
26	<i>Streptomyces scabies</i> 87-22 Possesses a Functional Tomatinase. Journal of Bacteriology, 2008, 190, 7684-7692.	2.2	60
27	A paucity of bacterial root diseases: Streptomyces succeeds where others fail. Physiological and Molecular Plant Pathology, 2003, 62, 65-72.	2.5	58
28	Streptomyces turgidiscabies Secretes a Novel Virulence Protein, Nec1, Which Facilitates Infection. Molecular Plant-Microbe Interactions, 2007, 20, 599-608.	2.6	56
29	Promiscuous Pathogenicity Islands and Phylogeny of Pathogenic Streptomyces spp Molecular Plant-Microbe Interactions, 2016, 29, 640-650.	2.6	48
30	The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins. Microbiology (United Kingdom), 2011, 157, 2681-2693.	1.8	47
31	4â€Nitrotryptophan is a substrate for the nonâ€ribosomal peptide synthetase TxtB in the thaxtomin A biosynthetic pathway. Molecular Microbiology, 2009, 73, 409-418.	2.5	45
32	Genome Content and Phylogenomics Reveal both Ancestral and Lateral Evolutionary Pathways in Plant-Pathogenic Streptomyces Species. Applied and Environmental Microbiology, 2016, 82, 2146-2155.	3.1	44
33	The CebE/MsiK Transporter is a Doorway to the Cello-oligosaccharide-mediated Induction of Streptomyces scabies Pathogenicity. Scientific Reports, 2016, 6, 27144.	3.3	42
34	Effect of carbohydrates on the production of thaxtomin A by Streptomyces acidiscabies. Archives of Microbiology, 2007, 188, 81-88.	2.2	38
35	Nitric oxide synthase inhibitors and nitric oxide donors modulate the biosynthesis of thaxtomin A, a nitrated phytotoxin produced by Streptomyces spp Nitric Oxide - Biology and Chemistry, 2005, 12, 46-53.	2.7	37
36	Streptomyces turgidiscabies Car8 contains a modular pathogenicity island that shares virulence genes with other actinobacterial plant pathogens. Plasmid, 2011, 65, 118-124.	1.4	34

ROSEMARY LORIA

#	Article	IF	CITATIONS
37	Characterization of an Insertion Sequence Element Associated with Genetically Diverse Plant Pathogenic Streptomyces spp. Journal of Bacteriology, 1999, 181, 1562-1568.	2.2	32
38	The <scp>ESX</scp> /type <scp>VII</scp> secretion system modulates development, but not virulence, of the plant pathogen <i><scp>S</scp>treptomyces scabies</i> . Molecular Plant Pathology, 2013, 14, 119-130.	4.2	31
39	Thaxtomin A Production and Virulence Are Controlled by Several <i>bld</i> Gene Global Regulators in <i>Streptomyces scabies</i> . Molecular Plant-Microbe Interactions, 2014, 27, 875-885.	2.6	30
40	Application of Organic and Inorganic Salts to Field-Grown Potato Tubers Can Suppress Silver Scurf During Potato Storage. Plant Disease, 1999, 83, 814-818.	1.4	29
41	Engineered P450 biocatalysts show improved activity and regio-promiscuity in aromatic nitration. Scientific Reports, 2017, 7, 842.	3.3	29
42	Molecular phylogenetic support from ribosomal DNA sequences for origin of <i>Helminthosporium</i> from <i>Leptosphaeria</i> like loculoascomycete ancestors. Mycologia, 2000, 92, 736-746.	1.9	28
43	High-Yield Production of Herbicidal Thaxtomins and Thaxtomin Analogs in a Nonpathogenic Streptomyces Strain. Applied and Environmental Microbiology, 2018, 84, .	3.1	26
44	Evidence That Thaxtomin C Is a Pathogenicity Determinant of <i>Streptomyces ipomoeae</i> , the Causative Agent of Streptomyces Soil Rot Disease of Sweet Potato. Molecular Plant-Microbe Interactions, 2012, 25, 393-401.	2.6	23
45	An artificial selfâ€sufficient cytochrome P450 directly nitrates fluorinated tryptophan analogs with a different regioâ€selectivity. Biotechnology Journal, 2016, 11, 624-632.	3.5	21
46	Relative Resistance of Potato Tubers Produced from Stem Cuttings and Seed-Piece-Propagated Plants toStreptomyces scabies. Plant Disease, 1986, 70, 1146.	1.4	21
47	Emergence of Novel Pathogenic Streptomyces Species by Site-Specific Accretion and cis-Mobilization of Pathogenicity Islands. Molecular Plant-Microbe Interactions, 2017, 30, 72-82.	2.6	20
48	Draft Genome Sequence of Streptomyces acidiscabies 84-104, an Emergent Plant Pathogen. Journal of Bacteriology, 2012, 194, 1847-1847.	2.2	19
49	Contribution of the βâ€glucosidase BglC to the onset of the pathogenic lifestyle of <i>Streptomyces scabies</i> . Molecular Plant Pathology, 2018, 19, 1480-1490.	4.2	19
50	Detection ofHelminthosporium solanifrom soil and plant tissue with species-specific PCR primers. FEMS Microbiology Letters, 1998, 168, 235-241.	1.8	18
51	Genetic background affects pathogenicity island function and pathogen emergence in <i>Streptomyces</i> . Molecular Plant Pathology, 2018, 19, 1733-1741.	4.2	18
52	Characterization of the Integration and Modular Excision of the Integrative Conjugative Element PAISt in Streptomyces turgidiscabies Car8. PLoS ONE, 2014, 9, e99345.	2.5	18
53	A Promiscuous Cytochrome P450 Hydroxylates Aliphatic and Aromatic Câ^H Bonds of Aromatic 2,5â€Điketopiperazines. ChemBioChem, 2019, 20, 1068-1077.	2.6	16
54	Tracking the Subtle Mutations Driving Host Sensing by the Plant Pathogen <i>Streptomyces scabies</i> . MSphere, 2017, 2, .	2.9	15

ROSEMARY LORIA

#	Article	IF	CITATIONS
55	Isolation and structural characterization of a non-diketopiperazine phytotoxin from a potato pathogenic <i>Streptomyces</i> strain. Natural Product Research, 2019, 33, 2951-2957.	1.8	15
56	One-Pot Biocombinatorial Synthesis of Herbicidal Thaxtomins. ACS Catalysis, 2018, 8, 10761-10768.	11.2	14
57	Complete sequencing and analysis of pEN2701, a novel 13-kb plasmid from an endophytic Streptomyces sp Plasmid, 2003, 49, 86-92.	1.4	11
58	Chemistry and Phytotoxicity of Thaxtomin A Alkyl Ethers. Journal of Agricultural and Food Chemistry, 2005, 53, 9446-9451.	5.2	10
59	Detection of Helminthosporium solani from soil and plant tissue with species-specific PCR primers. FEMS Microbiology Letters, 1998, 168, 235-241.	1.8	2
60	Applications of Natural Products from Soil Microbes. , 2015, , 51-77.		1