
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10951977/publications.pdf Version: 2024-02-01

IAMES N HUE

#	Article	IF	CITATIONS
1	An Early Onset Progressive Motor Neuron Disorder in Scyl1-Deficient Mice Is Associated with Mislocalization of TDP-43. Journal of Neuroscience, 2012, 32, 16560-16573.	3.6	34
2	Chromatin condensation via the condensin II complex is required for peripheral T-cell quiescence. EMBO Journal, 2011, 30, 263-276.	7.8	130
3	Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature, 2008, 452, 98-102.	27.8	219
4	Negative regulation of Jak2 by its auto-phosphorylation at tyrosine 913 via the Epo signaling pathway. Cellular Signalling, 2008, 20, 1995-2001.	3.6	18
5	Jak2 FERM Domain Interaction with the Erythropoietin Receptor Regulates Jak2 Kinase Activity. Molecular and Cellular Biology, 2008, 28, 1792-1801.	2.3	72
6	Leukemia Inhibitory Factor Regulates Trophoblast Giant Cell Differentiation via Janus Kinase 1-Signal Transducer and Activator of Transcription 3-Suppressor of Cytokine Signaling 3 Pathway. Molecular Endocrinology, 2008, 22, 1673-1681.	3.7	43
7	Jak2: normal function and role in hematopoietic disorders. Current Opinion in Genetics and Development, 2007, 17, 8-14.	3.3	129
8	Characterization of a Family of Novel Cysteine- Serine-Rich Nuclear Proteins (CSRNP). PLoS ONE, 2007, 2, e808.	2.5	34
9	A role for STAT5A/B in protection of peripheral T-lymphocytes from postactivation apoptosis: Insights from gene expression profiling. Cytokine, 2006, 34, 143-154.	3.2	24
10	Hematopoietic growth factors. , 2006, , 106-124.		0
11	Role of erythropoietin receptor signaling in Friend virus-induced erythroblastosis and polycythemia. Blood, 2006, 107, 73-78.	1.4	20
12	Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2. EMBO Journal, 2006, 25, 4763-4772.	7.8	69
13	Two Domains of the Erythropoietin Receptor Are Sufficient for Jak2 Binding/Activation and Function. Molecular and Cellular Biology, 2006, 26, 8527-8538.	2.3	45
14	Trophoblast Stem Cells Rescue Placental Defect in SOCS3-deficient Mice. Journal of Biological Chemistry, 2006, 281, 11444-11445.	3.4	23
15	Stat5 tetramer formation is associated with leukemogenesis. Cancer Cell, 2005, 7, 87-99.	16.8	213
16	Evi-1 expression in Xenopus. Gene Expression Patterns, 2005, 5, 601-608.	0.8	16
17	Regulation of Progesterone Levels during Pregnancy and Parturition by Signal Transducer and Activator of Transcription 5 and 20α-Hydroxysteroid Dehydrogenase. Molecular Endocrinology, 2005, 19, 431-440.	3.7	129
18	Absence of an Essential Role for Thymic Stromal Lymphopoietin Receptor in Murine B-Cell Development. Molecular and Cellular Biology, 2004, 24, 2584-2592.	2.3	137

#	Article	IF	CITATIONS
19	Re-examination of the Role of Suppressor of Cytokine Signaling 1 (SOCS1) in the Regulation of Toll-like Receptor Signaling. Journal of Biological Chemistry, 2004, 279, 54702-54707.	3.4	127
20	The Centrosomal, Putative Tumor Suppressor Protein TACC2 Is Dispensable for Normal Development, and Deficiency Does Not Lead to Cancer. Molecular and Cellular Biology, 2004, 24, 6403-6409.	2.3	33
21	Determination of the transphosphorylation sites of Jak2 kinase. Biochemical and Biophysical Research Communications, 2004, 325, 586-594.	2.1	43
22	Regulation of ZAP-70 Activation and TCR Signaling by Two Related Proteins, Sts-1 and Sts-2. Immunity, 2004, 20, 37-46.	14.3	145
23	SOCS3: an essential regulator of LIF receptor signaling in trophoblast giant cell differentiation. EMBO Journal, 2003, 22, 372-384.	7.8	183
24	SOCS3 regulates the plasticity of gp130 signaling. Nature Immunology, 2003, 4, 546-550.	14.5	394
25	Jak1 deficiency leads to enhanced Abelson-induced B-cell tumor formation. Blood, 2003, 101, 4937-4943.	1.4	33
26	Signal Transducers and Activators of Transcription in Cytokine Signaling. , 2003, , 559-573.		0
27	Cytokine Receptor Superfamily Signaling. , 2003, , 427-429.		0
28	c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes and Development, 2002, 16, 2530-2543.	5.9	409
29	Essential, Nonredundant Role for the Phosphoinositide 3-Kinase p110δ in Signaling by the B-Cell Receptor Complex. Molecular and Cellular Biology, 2002, 22, 8580-8591.	2.3	346
30	Absence of Erythrogenesis and Vasculogenesis in Plcg1-deficient Mice. Journal of Biological Chemistry, 2002, 277, 9335-9341.	3.4	126
31	Identification, cDNA Cloning, and Targeted Deletion of p70, a Novel, Ubiquitously Expressed SH3 Domain-Containing Protein. Molecular and Cellular Biology, 2002, 22, 7491-7500.	2.3	61
32	Reduced lymphomyeloid repopulating activity from adult bone marrow and fetal liver of mice lacking expression of STAT5. Blood, 2002, 99, 479-487.	1.4	134
33	The centrosomal protein TACC3 is essential for hematopoietic stem cell function and genetically interfaces with p53-regulated apoptosis. EMBO Journal, 2002, 21, 653-664.	7.8	112
34	JAK2, complemented by a second signal from c-kit or flt-3, triggers extensive self-renewal of primary multipotential hemopoietic cells. EMBO Journal, 2002, 21, 2159-2167.	7.8	50
35	Membrane localization is not required for Mpl function in normal hematopoietic cells. Blood, 2001, 98, 2077-2083.	1.4	16
36	Variations in the human phospholipase CÎ ³ 2 gene in patients with B-cell defects of unknown etiology. Immunogenetics, 2001, 53, 550-556.	2.4	6

#	Article	IF	CITATIONS
37	The Stat family in cytokine signaling. Current Opinion in Cell Biology, 2001, 13, 211-217.	5.4	649
38	Cutting Edge: Stat6-Dependent Substrate Depletion Regulates Nitric Oxide Production. Journal of Immunology, 2001, 166, 2173-2177.	0.8	268
39	Gadd45Î ³ Is Dispensable for Normal Mouse Development and T-Cell Proliferation. Molecular and Cellular Biology, 2001, 21, 3137-3143.	2.3	40
40	Jak3 Selectively Regulates Bax and Bcl-2 Expression To Promote T-Cell Development. Molecular and Cellular Biology, 2001, 21, 678-689.	2.3	61
41	Stat5a/b contribute to interleukin 7–induced B-cell precursor expansion, but abl- andbcr/abl-induced transformation are independent of Stat5. Blood, 2000, 96, 2277-2283.	1.4	184
42	Phospholipase Cγ2 Is Essential in the Functions of B Cell and Several Fc Receptors. Immunity, 2000, 13, 25-35.	14.3	444
43	Inhibition of Th1 Differentiation by IL-6 Is Mediated by SOCS1. Immunity, 2000, 13, 805-815.	14.3	352
44	Stat5 Is Essential for the Myelo- and Lymphoproliferative Disease Induced by TEL/JAK2. Molecular Cell, 2000, 6, 693-704.	9.7	289
45	The Challenges of Translating Knockout Phenotypes into Gene Function. Cell, 2000, 102, 131-134.	28.9	72
46	Antiapoptotic activity of <i>Stat5</i> required during terminal stages of myeloid differentiation. Genes and Development, 2000, 14, 232-244.	5.9	152
47	Stat5a/b contribute to interleukin 7–induced B-cell precursor expansion, but abl- andbcr/abl-induced transformation are independent of Stat5. Blood, 2000, 96, 2277-2283.	1.4	41
48	SOCS1 Deficiency Causes a Lymphocyte-Dependent Perinatal Lethality. Cell, 1999, 98, 609-616.	28.9	485
49	Stat5 Is Required for IL-2-Induced Cell Cycle Progression of Peripheral T Cells. Immunity, 1999, 10, 249-259.	14.3	530
50	Stat5 Activation Is Uniquely Associated with Cytokine Signaling in Peripheral T Cells. Immunity, 1999, 11, 225-230.	14.3	161
51	SOCS3 Is Essential in the Regulation of Fetal Liver Erythropoiesis. Cell, 1999, 98, 617-627.	28.9	339
52	Reconstitution of Early Lymphoid Proliferation and Immune Function in Jak3-Deficient Mice by Interleukin-3. Blood, 1999, 94, 1906-1914.	1.4	21
53	Reconstitution of Early Lymphoid Proliferation and Immune Function in Jak3-Deficient Mice by Interleukin-3. Blood, 1999, 94, 1906-1914.	1.4	11
54	Restoration of lymphocyte function in Janus Kinase 3-deficient mice by retroviral-mediated gene transfer. Nature Medicine, 1998, 4, 58-64.	30.7	143

#	Article	IF	CITATIONS
55	Signaling by the Cytokine Receptor Superfamilya. Annals of the New York Academy of Sciences, 1998, 865, 1-9.	3.8	105
56	Jak2 Is Essential for Signaling through a Variety of Cytokine Receptors. Cell, 1998, 93, 385-395.	28.9	987
57	Stat5a and Stat5b Proteins Have Essential and Nonessential, or Redundant, Roles in Cytokine Responses. Cell, 1998, 93, 841-850.	28.9	1,181
58	Interleukin-4 and -13 Induce Upregulation of the Murine Macrophage 12/15-Lipoxygenase Activity: Evidence for the Involvement of Transcription Factor STAT6. Blood, 1998, 92, 2503-2510.	1.4	108
59	Interleukin-4 and -13 Induce Upregulation of the Murine Macrophage 12/15-Lipoxygenase Activity: Evidence for the Involvement of Transcription Factor STAT6. Blood, 1998, 92, 2503-2510.	1.4	7
60	Chimeric Erythropoietin-Interferon γ Receptors Reveal Differences in Functional Architecture of Intracellular Domains for Signal Transduction. Journal of Biological Chemistry, 1997, 272, 4993-4999.	3.4	24
61	The Evil proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development. Mechanisms of Development, 1997, 65, 55-70.	1.7	155
62	Jak1 Plays an Essential Role for Receptor Phosphorylation and Stat Activation in Response to Granulocyte Colony-Stimulating Factor. Blood, 1997, 90, 597-604.	1.4	134
63	Jaks and stats in cytokine signaling. Stem Cells, 1997, 15, 105-112.	3.2	100
64	Jak1 Plays an Essential Role for Receptor Phosphorylation and Stat Activation in Response to Granulocyte Colony-Stimulating Factor. Blood, 1997, 90, 597-604.	1.4	7
65	STATs: Signal Transducers and Activators of Transcription. Cell, 1996, 84, 331-334.	28.9	1,359
66	Signaling by the Cytokine Receptor Superfamily in Normal and Transformed Hematopoietic Cells. Advances in Cancer Research, 1996, 68, 23-65.	5.0	68
67	STATs and MAPKs: Obligate or opportunistic partners in signaling. BioEssays, 1996, 18, 95-98.	2.5	77
68	Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature, 1996, 382, 171-174.	27.8	1,059
69	Other Kinases Can Substitute for Jak2 in Signal Transduction by Interferon-γ. Journal of Biological Chemistry, 1996, 271, 17174-17182.	3.4	83
70	The Janus Protein Tyrosine Kinase Family and Its Role in Cytokine Signaling. Advances in Immunology, 1995, 60, 1-35.	2.2	190
71	Jaks and Stats in signaling by the cytokine receptor superfamily. Trends in Genetics, 1995, 11, 69-74.	6.7	883
72	Structural and functional analysis of the promoter of the murine Vγ1.1 T cell receptor gene. European Journal of Immunology, 1995, 25, 3070-3078.	2.9	5

#	Article	IF	CITATIONS
73	Cytokine receptor signalling. Nature, 1995, 377, 591-594.	27.8	1,228
74	Interaction between the Components of the Interferon γ Receptor Complex. Journal of Biological Chemistry, 1995, 270, 20915-20921.	3.4	144
75	Interleukin-9 Induces Tyrosine Phosphorylation of Insulin Receptor Substrate-1 via JAK Tyrosine Kinases. Journal of Biological Chemistry, 1995, 270, 20497-20502.	3.4	126
76	A Kinase-deficient Splice Variant of the Human JAK3 Is Expressed in Hematopoietic and Epithelial Cancer Cells. Journal of Biological Chemistry, 1995, 270, 25028-25036.	3.4	59
77	Phosphorylation and Activation of the DNA Binding Activity of Purified Stat1 by the Janus Protein-tyrosine Kinases and the Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 1995, 270, 20775-20780.	3.4	146
78	The Action of Interleukin-2 Receptor Subunits Defines a New Type of Signaling Mechanism for Hematopoietin Receptors in Hepatic Cells and Fibroblasts. Journal of Biological Chemistry, 1995, 270, 8298-8310.	3.4	28
79	Distribution of the Mammalian Stat Gene Family in Mouse Chromosomes. Genomics, 1995, 29, 225-228.	2.9	177
80	The Janus Kinase Family and Signaling Through Members of the Cytokine Receptor Superfamily. Experimental Biology and Medicine, 1994, 206, 268-272.	2.4	61
81	Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature, 1994, 370, 153-157.	27.8	618
82	2 Cytokine receptors and signal transduction. Best Practice and Research: Clinical Haematology, 1994, 7, 17-48.	1.1	36
83	Signaling by the cytokine receptor superfamily just another kinase story. Trends in Endocrinology and Metabolism, 1994, 5, 137-143.	7.1	27
84	Gene Marking and Autologous Bone Marrow Transplantation. Annals of the New York Academy of Sciences, 1994, 716, 204-215.	3.8	45
85	Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science, 1994, 266, 1042-1045.	12.6	645
86	Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends in Biochemical Sciences, 1994, 19, 222-227.	7.5	637
87	The protein tyrosine kinase JAK1 complements defects in interferon-α/β and -γ signal transduction. Nature, 1993, 366, 129-135.	27.8	785
88	Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-& gamma; signal transduction pathway. Nature, 1993, 366, 166-170.	27.8	532
89	Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature, 1993, 366, 583-585.	27.8	363
90	Signal transduction through the receptor for erythropoietin. Seminars in Immunology, 1993, 5, 375-389.	5.6	46

#	Article	IF	CITATIONS
91	Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell, 1993, 73, 1445-1454.	28.9	768
92	JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell, 1993, 74, 227-236.	28.9	1,190
93	Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell, 1993, 74, 237-244.	28.9	955
94	Assignment of a novel protein tyrosine phosphatase gene (Hcph) to mouse chromosome 6. Genomics, 1992, 14, 793-795.	2.9	24
95	Interleukin-3 and Hematopoiesis. Chemical Immunology and Allergy, 1992, 51, 65-106.	1.7	47
96	Interleukin-3 and Hematopoiesis (Part 1 of 2). Chemical Immunology and Allergy, 1992, 51, 65-85.	1.7	61
97	The Evi-1 zinc finger protein and transformation of hematopoietic progenitors. International Journal of Cell Cloning, 1991, 9, 142-152.	1.6	0
98	Multiple Hematopoietic Growth Factors Signal Through Tyrosine Phosphorylation. Growth Factors, 1990, 2, 213-220.	1.7	132
99	Phenotypes and mechanisms in the transformation of hematopoietic cells. International Journal of Cell Cloning, 1990, 8, 130-146.	1.6	19
100	Origins and properties of hematopoietic growth factorâ€dependent cell lines. International Journal of Cell Cloning, 1989, 7, 68-91.	1.6	39
101	Murine B-cell stimulatory factor-1 (BSF-1)/Interleukin-4 (IL-4) is a multilineage colony-stimulating factor that acts directly on primitive hemopoietic progenitors. Journal of Cellular Physiology, 1989, 139, 463-468.	4.1	50
102	Mechanisms of IL-3 Regulated Growth and Transformation of Hematopoietic Cells. , 1989, , 331-341.		0
103	Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell, 1988, 54, 831-840.	28.9	423
104	Immunological Regulation of Hematopoietic Stem Cell Function by Interleukin 3 and Its Role in Leukemogenesis. , 1988, , 127-161.		1
105	B cell stimulatory factor-1/interleukin-4 mRNA is expressed by normal and transformed mast cells. Cell, 1987, 50, 809-818.	28.9	339
106	Recombinant murine granulocyte-macrophage (GM) colony-stimulating factor supports formation of GM and multipotential blast cell colonies in culture: Comparison with the effects of interleukin-3. Journal of Cellular Physiology, 1987, 131, 458-464.	4.1	65
107	Mechanisms in Interleukin 3 Regulated Growth and Differentiation. Advances in Experimental Medicine and Biology, 1987, 213, 149-162.	1.6	1
108	Affinity isolation of the interleukin-3 surface receptor. Biochemical and Biophysical Research Communications, 1986, 135, 870-879.	2.1	58

#	Article	IF	CITATIONS
109	Immunological Regulation of Hematopoietic/Lymphoid Stem Cell Differentiation by Interleukin 3. Advances in Immunology, 1986, 39, 1-50.	2.2	112
110	Permissive role of interleukin 3 (IL-3) in proliferation and differentiation of multipotential hemopoietic progenitors in culture. Journal of Cellular Physiology, 1985, 124, 182-190.	4.1	194
111	[40] Interleukin 3. Methods in Enzymology, 1985, 116, 540-552.	1.0	11
112	Neoplastic transformation of mast cells by Abelson-MuLV: abrogation of IL-3 dependence by a nonautocrine mechanism. Cell, 1985, 41, 685-693.	28.9	358
113	Biochemical and Biological Properties of Interleukin-3: A Lymphokine Mediating the Differentiation of a Lineage of Cells That Includes Prothymocytes and Mastlike Cells. , 1985, 10, 93-119.		26
114	Biochemical and Biological Properties of Interleukin-3. , 1984, , 209-222.		0
115	Properties of mouse leukemia viruses XVIII. Effective treatment of AKR leukemia with antibody to gp7l eliminates the neonatal burst of ecotropic AKR virus producing cells. Virology, 1982, 119, 68-81.	2.4	18
116	NATURAL CYTOTOXIC ACTIVITY OF MOUSE SPLEEN CELL CULTURES MAINTAINED WITH INTERLEUKIN-3. , 1982, , 917-921.		2
117	Interleukin 3: Possible Roles in the Regulation of Lymphocyte Differentiation and Growth. Immunological Reviews, 1982, 63, 5-32.	6.0	151
118	The Immune Response to C-Type Viruses and Its Potential Role in Leukemogenesis. Current Topics in Microbiology and Immunology, 1982, 101, 31-49.	1.1	19
119	Possible Immunological Mechanisms in C-Type Viral Leukemogenesis in Mice. Current Topics in Microbiology and Immunology, 1982, 98, 85-101.	1.1	23
120	Characteristics of IL-3 Derived and IL-3 Dependent Lymphocyte Cell Lines. Advances in Experimental Medicine and Biology, 1982, 149, 719-724.	1.6	1
121	Establishment of continuous cultures of Thy1.2+, Lytl+,2â^'T cells with purified interleukin 3. Cell, 1981, 25, 179-186.	28.9	111
122	Chronic immune stimulation is required for Moloney leukaemia virus-induced lymphomas. Nature, 1981, 289, 407-409.	27.8	80
123	Further characterization of the oncornavirus inactivating factor in normal mouse serum. Virology, 1979, 98, 20-34.	2.4	23
124	Serological and virological analysis of NIH (NIH × AKR) mice: Evidence for three AKR murine leukemia virus loci. Virology, 1978, 87, 287-297.	2.4	42
125	Genetic analysis of the endogenous C3H murine leukemia virus genome: Evidence for one locus unlinked to the endogenous murine leukemia virus genome of C57BL/6 mice. Virology, 1978, 87, 298-306.	2.4	26
126	Biological, immunological, and biochemical evidence that HIX virus is a recombinant between moloney leukemia virus and a murine xenotropic C type virus. Virology, 1978, 90, 241-254.	2.4	66

#	Article	IF	CITATIONS
127	Comparison of sequence homology of poly(A) and non-poly(A) containing 34S RNA of AKR murine leukemia virus. Biochemical and Biophysical Research Communications, 1977, 74, 499-505.	2.1	5
128	Oncogenic and immunogenic potential of cloned HIX virus in mice and cats. Medical Microbiology and Immunology, 1977, 164, 119-129.	4.8	43
129	The immune response of (C57BL/6 X C3H)F1 mice to the endogenous AKR-MuLV. Medical Microbiology and Immunology, 1977, 164, 207-216.	4.8	2
130	Natural Immunity to Endogenous Oncornaviruses in Mice. , 1977, 6, 169-194.		28
131	Inactivation of murine xenotropic oncornavirus by normal mouse sera is not immunoglobulin-mediated. Virology, 1976, 71, 346-351.	2.4	44
132	Autogenous Immunity to Endogenous RNA Tumor Virus: Reactivity of Natural Immune Sera to Antigenic Determinants of Several Biologically Distinct Murine Leukemia Viruses 2. Journal of the National Cancer Institute, 1975, 55, 831-838.	6.3	13
133	Polypeptides of mammalian oncornaviruses. Virology, 1975, 63, 60-67.	2.4	85
134	Strain-Dependent Development of an Autogenous Immune Response in Mice to Endogenous C Type Viruses1. Proceedings of the International Symposium on Comparative Leukemia Research, 1975, , 177-179.	0.1	5
135	Fractionation of 34 S Ribonucleic Acid Subunits from Oncornaviruses on Polyuridylate-Sepharose Columns. Journal of Biological Chemistry, 1974, 249, 38-42.	3.4	39
136	Evidence for a Stable Intermediate in Leukemia Virus Activation in AKR Mouse Embryo Cells. Journal of Virology, 1974, 14, 451-456.	3.4	10
137	Effects of Polyadenylic Acids on Functions of Murine RNA Tumor Viruses. Journal of Virology, 1973, 12, 1216-1225.	3.4	45

138 Signal transduction in the regulation of hematopoiesis. , 0, , 125-149.

0