
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1095074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology, 2019, 17, 441-448.	28.6	748
2	Role of PIGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nature Medicine, 2003, 9, 936-943.	30.7	699
3	Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nature Biotechnology, 2019, 37, 314-322.	17.5	254
4	Ecological fitness and strategies of adaptation of <i>Bartonella</i> species to their hosts and vectors. Veterinary Research, 2009, 40, 29.	3.0	213
5	Intruders below the Radar: Molecular Pathogenesis of Bartonella spp. Clinical Microbiology Reviews, 2012, 25, 42-78.	13.6	210
6	A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 856-861.	7.1	205
7	Molecular and Cellular Basis ofBartonellaPathogenesis. Annual Review of Microbiology, 2004, 58, 365-390.	7.3	183
8	VEGF-A and PlGF-1 stimulate chemotactic migration of human mesenchymal progenitor cells. Biochemical and Biophysical Research Communications, 2005, 334, 561-568.	2.1	176
9	Host Cell Interactome of Tyrosine-Phosphorylated Bacterial Proteins. Cell Host and Microbe, 2009, 5, 397-403.	11.0	175
10	Genome-wide analysis of transcriptional hierarchy and feedback regulation in the flagellar system of Helicobacter pylori. Molecular Microbiology, 2004, 52, 947-961.	2.5	165
11	Invasion and Persistent Intracellular Colonization of Erythrocytes. Journal of Experimental Medicine, 2001, 193, 1077-1086.	8.5	152
12	The VirB type IV secretion system of <i>Bartonella henselae</i> mediates invasion, proinflammatory activation and antiapoptotic protection of endothelial cells. Molecular Microbiology, 2004, 52, 81-92.	2.5	152
13	Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins. Nature, 2012, 482, 107-110.	27.8	149
14	Differential Opa specificities for CD66 receptors influence tissue interactions and cellular response to Neisseria gonorrhoeae. Molecular Microbiology, 1997, 26, 971-980.	2.5	146
15	Bartonella–host-cell interactions and vascular tumour formation. Nature Reviews Microbiology, 2005, 3, 621-631.	28.6	144
16	Bartonella interactions with endothelial cells and erythrocytes. Trends in Microbiology, 2001, 9, 279-285.	7.7	143
17	The VirB/VirD4 type IV secretion system of <i>Bartonella</i> is essential for establishing intraerythrocytic infection. Molecular Microbiology, 2002, 46, 1053-1067.	2.5	132
18	Isolation of Bartonella schoenbuchensis from Lipoptena cervi , a Blood-Sucking Arthropod Causing Deer Ked Dermatitis. Journal of Clinical Microbiology, 2004, 42, 5320-5323.	3.9	125

CHRISTOPH G DEHIO

#	Article	IF	CITATIONS
19	Genomic analysis of Bartonella identifies type IV secretion systems as host adaptability factors. Nature Genetics, 2007, 39, 1469-1476.	21.4	120
20	Autophagy Proteins Promote Repair of Endosomal Membranes Damaged by the Salmonella Type Three Secretion System 1. Cell Host and Microbe, 2015, 18, 527-537.	11.0	116
21	A bacterial conjugation machinery recruited for pathogenesis. Molecular Microbiology, 2003, 49, 1253-1266.	2.5	112
22	A Translocated Bacterial Protein Protects Vascular Endothelial Cells from Apoptosis. PLoS Pathogens, 2006, 2, e115.	4.7	112
23	An integrative strategy to identify the entire protein coding potential of prokaryotic genomes by proteogenomics. Genome Research, 2017, 27, 2083-2095.	5.5	112
24	Opa binding to cellular CD66 receptors mediates the transcellular traversal of Neisseria gonorrhoeae across polarized T84 epithelial cell monolayers. Molecular Microbiology, 1998, 30, 657-671.	2.5	106
25	Bartonella bovis Bermond et al. sp. nov. and Bartonella capreoli sp. nov., isolated from European ruminants International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 383-390.	1.7	101
26	The Trw Type IV Secretion System of Bartonella Mediates Host-Specific Adhesion to Erythrocytes. PLoS Pathogens, 2010, 6, e1000946.	4.7	98
27	Carcinoembryonic Antigen Family Receptor Specificity of Neisseria meningitidis Opa Variants Influences Adherence to and Invasion of Proinflammatory Cytokine-Activated Endothelial Cells. Infection and Immunity, 2000, 68, 3601-3607.	2.2	97
28	The early nodulin gene SrEnod2 from Sesbania rostrata is inducible by cytokinin Plant Journal, 1992, 2, 117-128.	5.7	93
29	Syndecan-1 and syndecan-4 can mediate the invasion of OpaHSPG-expressing Neisseria gonorrhoeae into epithelial cells. Cellular Microbiology, 2000, 2, 69-82.	2.1	92
30	Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella. PLoS Genetics, 2011, 7, e1001296.	3.5	92
31	Adenylylation of Gyrase and Topo IV by FicT Toxins Disrupts Bacterial DNA Topology. Cell Reports, 2015, 12, 1497-1507.	6.4	92
32	Directed shotgun proteomics guided by saturated RNA-seq identifies a complete expressed prokaryotic proteome. Genome Research, 2013, 23, 1916-1927.	5.5	91
33	Vitronectin-dependent invasion of epithelial cells byNeisseria gonorrhoeaeinvolves αvintegrin receptors. FEBS Letters, 1998, 424, 84-88.	2.8	90
34	Infection-associated type IV secretion systems of <i>Bartonella</i> and their diverse roles in host cell interaction. Cellular Microbiology, 2008, 10, 1591-1598.	2.1	86
35	Persistence of <i>Bartonella</i> spp. stealth pathogens: from subclinical infections to vasoproliferative tumor formation. FEMS Microbiology Reviews, 2012, 36, 563-599.	8.6	85
36	Recent progress in understanding Bartonella-induced vascular proliferation. Current Opinion in Microbiology, 2003, 6, 61-65.	5.1	82

#	Article	IF	CITATIONS
37	Bartonella alsatica sp. nov., a new Bartonella species isolated from the blood of wild rabbits. International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 283-288.	1.7	79
38	Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen <i>Bartonella henselae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14643-14648.	7.1	79
39	Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes T-DNA. Plant Molecular Biology, 1993, 23, 1199-1210.	3.9	76
40	Structure and Biological Activity of the Short-chain Lipopolysaccharide from Bartonella henselae ATCC 49882T. Journal of Biological Chemistry, 2004, 279, 21046-21054.	3.4	76
41	Bartonella henselae Induces NF-κB-Dependent Upregulation of Adhesion Molecules in Cultured Human Endothelial Cells: Possible Role of Outer Membrane Proteins as Pathogenic Factors. Infection and Immunity, 2001, 69, 5088-5097.	2.2	71
42	Construction of versatile high-level expression vectors for Bartonella henselae and the use of green fluorescent protein as a new expression marker. Gene, 1998, 215, 223-229.	2.2	68
43	Cutting Edge: Antibody-Mediated Cessation of Hemotropic Infection by the Intraerythrocytic Mouse Pathogen <i>Bartonella grahamii</i> . Journal of Immunology, 2001, 167, 11-14.	0.8	66
44	<i><scp>B</scp>artonella</i> entry mechanisms into mammalian host cells. Cellular Microbiology, 2012, 14, 1166-1173.	2.1	66
45	Signature-tagged mutagenesis: technical advances in a negative selection method for virulence gene identification. Current Opinion in Microbiology, 2005, 8, 612-619.	5.1	65
46	Molecular analysis of neisserial Opa protein interactions with the CEA family of receptors: identification of determinants contributing to the differential specificities of binding. Cellular Microbiology, 1999, 1, 169-181.	2.1	62
47	Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in <i>Listeria</i> Infection and Reveals Different Actin Nucleation Mechanisms during <i>Listeria</i> Cell Invasion and Actin Comet Tail Formation. MBio, 2015, 6, e00598-15.	4.1	61
48	Specific inhibition of diverse pathogens in human cells by synthetic microRNA-like oligonucleotides inferred from RNAi screens. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4548-4553.	7.1	60
49	Bacterial type IV secretion systems in human disease. Molecular Microbiology, 2009, 73, 141-151.	2.5	58
50	Bacterial persistence within erythrocytes: A unique pathogenic strategy of Bartonella spp International Journal of Medical Microbiology, 2001, 291, 555-560.	3.6	57
51	The BatR/BatS Two-Component Regulatory System Controls the Adaptive Response of <i>Bartonella henselae</i> during Human Endothelial Cell Infection. Journal of Bacteriology, 2010, 192, 3352-3367.	2.2	57
52	Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism. Journal of Proteomics, 2014, 99, 123-137.	2.4	55
53	A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella. PLoS Genetics, 2017, 13, e1007077.	3.5	55
54	Coordinated activation of VEGFR-1 and VEGFR-2 is a potent arteriogenic stimulus leading to enhancement of regional perfusion. Cardiovascular Research, 2004, 61, 789-795.	3.8	53

CHRISTOPH G DEHIO

#	Article	IF	CITATIONS
55	A translocated protein of <i>Bartonella henselae</i> interferes with endocytic uptake of individual bacteria and triggers uptake of large bacterial aggregates via the invasome. Cellular Microbiology, 2009, 11, 927-945.	2.1	53
56	New insights into the role of Bartonella effector proteins in pathogenesis. Current Opinion in Microbiology, 2015, 23, 80-85.	5.1	53
57	Ligation of Cell Surface Heparan Sulfate Proteoglycans by Antibody-Coated Beads Stimulates Phagocytic Uptake into Epithelial Cells: A Model for Cellular Invasion byNeisseria gonorrhoeae. Experimental Cell Research, 1998, 242, 528-539.	2.6	51
58	Fic domain atalyzed adenylylation: Insight provided by the structural analysis of the type IV secretion system effector BepA. Protein Science, 2011, 20, 492-499.	7.6	50
59	Evolutionary Dynamics of Pathoadaptation Revealed by Three Independent Acquisitions of the VirB/D4 Type IV Secretion System in Bartonella. Genome Biology and Evolution, 2017, 9, 761-776.	2.5	50
60	Combined action of the type IV secretion effector proteins BepC and BepF promotes invasome formation of Bartonella henselae on endothelial and epithelial cells. Cellular Microbiology, 2011, 13, 284-299.	2.1	48
61	Proteomic analysis of the sarcosine-insoluble outer membrane fraction of the bacterial pathogenBartonella henselae. Proteomics, 2004, 4, 3021-3033.	2.2	47
62	Functional Dissection of the Conjugative Coupling Protein TrwB. Journal of Bacteriology, 2010, 192, 2655-2669.	2.2	47
63	Gene Transfer Agent Promotes Evolvability within the Fittest Subpopulation of a Bacterial Pathogen. Cell Systems, 2017, 4, 611-621.e6.	6.2	47
64	Structure of the N-Terminal Gyrase B Fragment in Complex with ADPâ‹Pi Reveals Rigid-Body Motion Induced by ATP Hydrolysis. PLoS ONE, 2014, 9, e107289.	2.5	46
65	Functional interactions between type IV secretion systems involved in DNA transfer and virulence. Microbiology (United Kingdom), 2005, 151, 3505-3516.	1.8	46
66	<i>Bartonella henselae</i> trimeric autotransporter adhesin BadA expression interferes with effector translocation by the VirB/D4 type IV secretion system. Cellular Microbiology, 2013, 15, 759-778.	2.1	43
67	Characterization of <i>Bartonella clarridgeiae</i> Flagellin (FlaA) and Detection of Antiflagellin Antibodies in Patients with Lymphadenopathy. Journal of Clinical Microbiology, 2000, 38, 2943-2948.	3.9	43
68	Host Cell Invasion by Pathogenic Neisseriae. Sub-Cellular Biochemistry, 2000, 33, 61-96.	2.4	42
69	Interactions of Bartonella henselae with vascular endothelial cells. Current Opinion in Microbiology, 1999, 2, 78-82.	5.1	40
70	3D correlative electron microscopy reveals continuity of <i>Brucella</i> -containing vacuoles with the endoplasmic reticulum. Journal of Cell Science, 2018, 131, .	2.0	40
71	Simultaneous analysis of large-scale RNAi screens for pathogen entry. BMC Genomics, 2014, 15, 1162.	2.8	38
72	Biological Diversity and Molecular Plasticity of FIC Domain Proteins. Annual Review of Microbiology, 2016, 70, 341-360.	7.3	37

5

#	Article	IF	CITATIONS
73	Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains. EBioMedicine, 2019, 41, 479-487.	6.1	37
74	Role of distinct typeâ€IVâ€secretion systems and secreted effector sets in host adaptation by pathogenic <i>Bartonella</i> species. Cellular Microbiology, 2019, 21, e13004.	2.1	37
75	A Translocation Motif in Relaxase TrwC Specifically Affects Recruitment by Its Conjugative Type IV Secretion System. Journal of Bacteriology, 2013, 195, 4999-5006.	2.2	36
76	Transfer of R388 Derivatives by a Pathogenesis-Associated Type IV Secretion System into both Bacteria and Human Cells. Journal of Bacteriology, 2011, 193, 6257-6265.	2.2	35
77	Bacterial effector binds host cell adenylyl cyclase to potentiate Gαs-dependent cAMP production. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9581-9586.	7.1	35
78	gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens. Genome Biology, 2015, 16, 220.	8.8	35
79	Virulence-associated type IV secretion systems of Bartonella. Trends in Microbiology, 2005, 13, 336-342.	7.7	34
80	Bartonella and BrucellaWeapons and Strategies for Stealth Attack. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a010231-a010231.	6.2	34
81	New perspectives into bacterial DNA transfer to human cells. Trends in Microbiology, 2012, 20, 355-359.	7.7	33
82	Parapoxviruses: potential alternative vectors for directing the immune response in permissive and non-permissive hosts. Journal of Biotechnology, 1999, 73, 235-242.	3.8	32
83	Characterization of the Genome Composition of Bartonella koehlerae by Microarray Comparative Genomic Hybridization Profiling. Journal of Bacteriology, 2005, 187, 6155-6165.	2.2	32
84	Conserved Inhibitory Mechanism and Competent ATP Binding Mode for Adenylyltransferases with Fic Fold. PLoS ONE, 2013, 8, e64901.	2.5	32
85	A Translocated Effector Required for Bartonella Dissemination from Derma to Blood Safeguards Migratory Host Cells from Damage by Co-translocated Effectors. PLoS Pathogens, 2014, 10, e1004187.	4.7	29
86	Bartonella henselae: Subversion of vascular endothelial cell functions by translocated bacterial effector proteins. International Journal of Biochemistry and Cell Biology, 2009, 41, 507-510.	2.8	28
87	Intrinsic regulation of FIC-domain AMP-transferases by oligomerization and automodification. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E529-37.	7.1	27
88	An experimental strategy for the identification of <scp>AMP</scp> ylation targets from complex protein samples. Proteomics, 2014, 14, 1048-1052.	2.2	26
89	Stable expression of a single-copy rolA gene in transgenic Arabidopsis thaliana plants allows an exhaustive mutagenic analysis of the transgene-associated phenotype. Molecular Genetics and Genomics, 1993, 241-241, 359-366.	2.4	22
90	<i>Bartonella henselae</i> engages inside-out and outside-in signaling by integrin β1 and talin1 during invasome-mediated bacterial uptake. Journal of Cell Science, 2011, 124, 3591-3602.	2.0	22

#	Article	IF	CITATIONS
91	Explicit Modeling of siRNA-Dependent On- and Off-Target Repression Improves the Interpretation of Screening Results. Cell Systems, 2017, 4, 182-193.e4.	6.2	22
92	A Bartonella Effector Acts as Signaling Hub for Intrinsic STAT3 Activation to Trigger Anti-inflammatory Responses. Cell Host and Microbe, 2020, 27, 476-485.e7.	11.0	22
93	<i>Bartonella</i> gene transfer agent: Evolution, function, and proposed role in host adaptation. Cellular Microbiology, 2019, 21, e13068.	2.1	21
94	Type IV Effector Secretion and Subversion of Host Functions by Bartonella and Brucella Species. Current Topics in Microbiology and Immunology, 2017, 413, 269-295.	1.1	20
95	Characterization of the cryptic plasmid pBGR1 from Bartonella grahamii and construction of a versatile Escherichia coli–Bartonella spp. shuttle cloning vector. Plasmid, 2003, 49, 44-52.	1.4	19
96	BID-F1 and BID-F2 Domains of Bartonella henselae Effector Protein BepF Trigger Together with BepC the Formation of Invasome Structures. PLoS ONE, 2011, 6, e25106.	2.5	19
97	An Engineered Heparin-Binding Form of VEGF-E (hbVEGF-E). Biological effects in vitro and mobilizatiion of precursor cells. Angiogenesis, 2003, 6, 201-211.	7.2	17
98	Dual input control: activation of the <i><scp>B</scp>artonella henselae</i> â€ <scp>VirB</scp> / <scp>D</scp> 4 type <scp>IV</scp> secretion system by the stringent sigma factor <scp>RpoH</scp> 1 and the <scp>BatR</scp> / <scp>BatS</scp> twoâ€component system. Molecular Microbiology, 2013, 90, 756-775.	2.5	17
99	NEMix: Single-cell Nested Effects Models for Probabilistic Pathway Stimulation. PLoS Computational Biology, 2015, 11, e1004078.	3.2	17
100	Mitochondrial fragmentation affects neither the sensitivity to TNFα-induced apoptosis of Brucella-infected cells nor the intracellular replication of the bacteria. Scientific Reports, 2018, 8, 5173.	3.3	17
101	Versatility of the BID Domain: Conserved Function as Type-IV-Secretion-Signal and Secondarily Evolved Effector Functions Within Bartonella-Infected Host Cells. Frontiers in Microbiology, 2019, 10, 921.	3.5	16
102	A Genome-Wide siRNA Screen Implicates Spire1/2 in SipA-Driven Salmonella Typhimurium Host Cell Invasion. PLoS ONE, 2016, 11, e0161965.	2.5	16
103	The BID Domain of Type IV Secretion Substrates Forms a Conserved Four-Helix Bundle Topped with a Hook. Structure, 2017, 25, 203-211.	3.3	15
104	Rickettsia prowazekii and Bartonella henselae: Differences in the intracellular life styles revisited. International Journal of Medical Microbiology, 2000, 290, 135-141.	3.6	14
105	The Bartonella henselae VirB/Bep system interferes with vascular endothelial growth factor (VEGF) signalling in human vascular endothelial cells. Cellular Microbiology, 2011, 13, 419-431.	2.1	11
106	A Role for the VPS Retromer in <i>Brucella</i> Intracellular Replication Revealed by Genomewide siRNA Screening. MSphere, 2019, 4, .	2.9	11
107	Characterization of Genes Involved in Long-Term Bacteremia in Mice by Bartonella birtlesii. Annals of the New York Academy of Sciences, 2005, 1063, 312-314.	3.8	10
108	Systems-level interference strategies to decipher host factors involved in bacterial pathogen interaction: from RNAi to CRISPRi. Current Opinion in Microbiology, 2017, 39, 34-41.	5.1	10

#	ARTICLE	IF	CITATIONS
109	Bartonella effector protein C mediates actin stress fiber formation via recruitment of GEF-H1 to the plasma membrane. PLoS Pathogens, 2021, 17, e1008548.	4.7	10
110	Persistent intracellular pathogens. FEMS Microbiology Reviews, 2012, 36, 513-513.	8.6	9
111	The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome. Applied and Environmental Microbiology, 2017, 83, .	3.1	9
112	Partial Disruption of Translational and Posttranslational Machinery Reshapes Growth Rates of Bartonella birtlesii. MBio, 2013, 4, e00115-13.	4.1	8
113	Improved pathway reconstruction from RNA interference screens by exploiting off-target effects. Bioinformatics, 2018, 34, i519-i527.	4.1	8
114	Growth-restricting effects of siRNA transfections: a largely deterministic combination of off-target binding and hybridization-independent competition. Nucleic Acids Research, 2018, 46, 9309-9320.	14.5	7
115	Structural basis for selective AMPylation of Rac-subfamily GTPases by <i>Bartonella</i> effector protein 1 (Bep1). Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
116	Imaging InIC Secretion to Investigate Cellular Infection by the Bacterial Pathogen Listeria monocytogenes . Journal of Visualized Experiments, 2013, , e51043.	0.3	6
117	Crystal Structure of the Escherichia coli Fic Toxin-Like Protein in Complex with Its Cognate Antitoxin. PLoS ONE, 2016, 11, e0163654.	2.5	6
118	Microscopy-based Assays for High-throughput Screening of Host Factors Involved in Brucella Infection of Hela Cells. Journal of Visualized Experiments, 2016, , .	0.3	6
119	Multi-scale Gaussian representation and outline-learning based cell image segmentation. BMC Bioinformatics, 2013, 14, S6.	2.6	5
120	Evolutionary Diversification of Host-Targeted Bartonella Effectors Proteins Derived from a Conserved FicTA Toxin-Antitoxin Module. Microorganisms, 2021, 9, 1645.	3.6	5
121	The Impact of Bartonella VirB/VirD4 Type IV Secretion System Effectors on Eukaryotic Host Cells. Frontiers in Microbiology, 2021, 12, 762582.	3.5	5
122	Identification of the <i>Bartonella</i> autotransporter CFA as a protective antigen and hypervariable target of neutralizing antibodies in mice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	5
123	Adaptive immune defense prevents Bartonella persistence upon trans-placental transmission. PLoS Pathogens, 2022, 18, e1010489.	4.7	4
124	PyBDA: a command line tool for automated analysis of big biological data sets. BMC Bioinformatics, 2019, 20, 564.	2.6	3
125	Neisseria. , 2001, , 559-618.		3

#	Article	IF	CITATIONS
127	The interactions of Bartonella with endothelial cells and erythrocytes. Trends in Microbiology, 2001, 9, 531-532.	7.7	1
128	Editorial overview: Bacterial systems biology. Current Opinion in Microbiology, 2017, 39, viii-xi.	5.1	1
129	Manipulation of host cell signaling by bacterial FIC proteins. FASEB Journal, 2013, 27, 554.3.	0.5	1
130	Bartonella taylorii: A Model Organism for Studying Bartonella Infection in vitro and in vivo. Frontiers in Microbiology, 0, 13, .	3.5	1
131	Proteomic analysis of the sarcosine-insoluble outer membrane fraction of the bacterial pathogenBartonella henselae. , 0, , 203-224.		Ο
132	Systems-level analysis of host–pathogen interaction using RNA interference. New Biotechnology, 2013, 30, 308-313.	4.4	0
133	Graph cut and image intensity-based splitting improves nuclei segmentation in high-content screening. , 2013, , .		О