Andrey Tovchigrechko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10950015/publications.pdf

Version: 2024-02-01

27 papers

2,032 citations

394421 19 h-index 26 g-index

27 all docs

27 docs citations

times ranked

27

3847 citing authors

#	Article	IF	CITATIONS
1	GRAMM-X public web server for protein-protein docking. Nucleic Acids Research, 2006, 34, W310-W314.	14.5	678
2	Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature, 2010, 468, 60-66.	27.8	280
3	Prediction of homoprotein and heteroprotein complexes by protein docking and templateâ€based modeling: A CASPâ€CAPRI experiment. Proteins: Structure, Function and Bioinformatics, 2016, 84, 323-348.	2.6	148
4	Gastrointestinal microbial populations can distinguish pediatric and adolescent Acute Lymphoblastic Leukemia (ALL) at the time of disease diagnosis. BMC Genomics, 2016, 17, 635.	2.8	103
5	RsfA (YbeB) Proteins Are Conserved Ribosomal Silencing Factors. PLoS Genetics, 2012, 8, e1002815.	3 . 5	88
6	Differences in the Nasopharyngeal Microbiome During Acute Respiratory Tract Infection With Human Rhinovirus and Respiratory Syncytial Virus in Infancy. Journal of Infectious Diseases, 2016, 214, 1924-1928.	4.0	84
7	DOCKGROUND resource for studying protein-protein interfaces. Bioinformatics, 2006, 22, 2612-2618.	4.1	76
8	Nasopharyngeal Lactobacillus is associated with a reduced risk of childhood wheezing illnesses following acute respiratory syncytial virus infection in infancy. Journal of Allergy and Clinical Immunology, 2018, 142, 1447-1456.e9.	2.9	74
9	D <scp>OCKGROUND</scp> system of databases for protein recognition studies: Unbound structures for docking. Proteins: Structure, Function and Bioinformatics, 2007, 69, 845-851.	2.6	65
10	Nasopharyngeal Microbiome in Respiratory Syncytial Virus Resembles Profile Associated with Increased Childhood Asthma Risk. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1180-1183.	5.6	63
11	Minimally Invasive Sampling Method Identifies Differences in Taxonomic Richness of Nasal Microbiomes in Young Infants Associated with Mode of Delivery. Microbial Ecology, 2016, 71, 233-242.	2.8	54
12	Global Molecular Epidemiology of Respiratory Syncytial Virus from the 2017â^'2018 INFORM-RSV Study. Journal of Clinical Microbiology, 2020, 59, .	3.9	52
13	Emergence of new antigenic epitopes in the glycoproteins of human respiratory syncytial virus collected from a US surveillance study, 2015–17. Scientific Reports, 2019, 9, 3898.	3.3	41
14	Co-occurrence of Anaerobes in Human Chronic Wounds. Microbial Ecology, 2019, 77, 808-820.	2.8	40
15	Type 1 Diabetes: Urinary Proteomics and Protein Network Analysis Support Perturbation of Lysosomal Function. Theranostics, 2017, 7, 2704-2717.	10.0	30
16	The size of the intermolecular energy funnel in protein–protein interactions. Proteins: Structure, Function and Bioinformatics, 2008, 72, 344-352.	2.6	26
17	Quantitative Differences in the Urinary Proteome of Siblings Discordant for Type 1 Diabetes Include Lysosomal Enzymes. Journal of Proteome Research, 2015, 14, 3123-3135.	3.7	26
18	Chemically Defined, High-Density Insect Cell-Based Expression System for Scalable AAV Vector Production. Molecular Therapy - Methods and Clinical Development, 2020, 19, 330-340.	4.1	22

#	Article	IF	Citations
19	PGP: parallel prokaryotic proteogenomics pipeline for MPI clusters, high-throughput batch clusters and multicore workstations. Bioinformatics, 2014, 30, 1469-1470.	4.1	19
20	Characterization of circulating RSV strains among subjects in the OUTSMART-RSV surveillance program during the 2016-17 winter viral season in the United States. PLoS ONE, 2018, 13, e0200319.	2.5	19
21	Distinct mucosal microbial communities in infants with surgical necrotizing enterocolitis correlate with age and antibiotic exposure. PLoS ONE, 2018, 13, e0206366.	2.5	14
22	Characterization of human respiratory syncytial virus (RSV) isolated from HIVâ€exposedâ€uninfected and HIVâ€unexposed infants in South Africa during 2015â€2017. Influenza and Other Respiratory Viruses, 2020, 14, 403-411.	3.4	10
23	Associations of pathogenâ€specific and hostâ€specific characteristics with disease outcome in patients with <i>Staphylococcus aureus</i> bacteremic pneumonia. Clinical and Translational Immunology, 2019, 8, e01070.	3.8	9
24	LARGE-SCALE STRUCTURAL MODELING OF PROTEIN COMPLEXES AT LOW RESOLUTION. Journal of Bioinformatics and Computational Biology, 2008, 06, 789-810.	0.8	6
25	Evaluation of the upper airway microbiome and immune response with nasal epithelial lining fluid absorption and nasal washes. Scientific Reports, 2020, 10, 20618.	3.3	4
26	Molecular Analysis of Respiratory Syncytial Virus (RSV) F and G Proteins In the OUTSMART Surveillance Program During the 2015–2016 Winter Season in the United States. Open Forum Infectious Diseases, 2017, 4, S575-S576.	0.9	1
27	Bioinformatics for Genomes and Metagenomes in Ecology Studies. Advanced Topics in Science and Technology in China, 2014, , 203-226.	0.1	0